Практический журнал для бухгалтеров о расчете заработной платы

В химии описание различных окислительно-восстановительных процессов не обходится без степеней окисления - специальных условных величин, при помощи которых можно определить заряд атома какого-либо химического элемента .

Если представить степень окисления (не путайте с валентностью, так как во многих случаях они не совпадают) как запись в тетради, то мы увидим просто цифры со знаками ноль (0 - в простом веществе), плюс (+) или минус (-) над интересующим нас веществом. Как бы то ни было, они играют огромную роль в химии, а умение определять СО(степень окисления) - это необходимая база в изучении данного предмета, без которой дальнейшие действия смысла не имеют.

Мы используем СО, чтобы описать химические свойства вещества (или отдельного элемента), верного написания его международного названия (понятного для любой страны и нации вне зависимости от используемого языка) и формулы, а также для классификации по признакам.

Степень может быть трёх видов: высшая (для её определения требуется знать, в какой группе находится элемент), промежуточная и низшая (необходимо из числа 8 вычесть номер группы, в которой располагается элемент; естественно, цифра 8 берётся потому, что всего в периодической системе Д.Менделеева 8 групп). Подробно об определении степени окисления и правильном её расставлении будет сказано ниже.

Как определяется степень окисления: постоянная СО

Во-первых, СО может быть переменной или постоянной

Определение постоянной степени окисления не составляет большого труда, поэтому урок лучше начинать именно с неё: для этого необходимо только умение пользоваться ПС (периодической системой). Итак, существует ряд определённых правил:

  1. Нулевая степень. Выше было упомянуто - её имеют исключительно простые вещества: S, O2, Al, K и так далее.
  2. Если молекулы нейтральны (иными словами, они не имеют электрического заряда), то в сумме их степени окисления равняются нулю. Однако в случае с ионами сумма должна равняться заряду самого иона.
  3. В I, II, III группах таблицы Менделеева расположены преимущественно металлы. Элементы этих групп имеют положительный заряд, номер которого соответствует номеру группы (+1, +2, или +3). Пожалуй, большое исключение составляет железо (Fe) - его СО бывает как +2, так и +3.
  4. СО водорода (H) чаще всего бывает +1 (при взаимодействии с неметаллами: HCl, H2S), но в отдельных случаях мы ставим -1 (при образовании гидридов в соединениях с металлами: KH, MgH2).
  5. СО кислорода (O) +2. Соединения с данным элементом образуют оксиды (MgO, Na2O, H20 - вода). Однако есть и случаи, когда кислород имеет степень окисления -1 (при образовании пероксидов) или и вовсе выступает в роли восстановителя (в соединении с фтором F, потому что окислительные свойства кислорода слабее).

На основе данных сведений расставляются степени окисления во множестве сложных веществ, описываются окислительно-восстановительные реакции и прочее, однако об этом позже.

Переменная СО

Некоторые химические элементы отличаются тем, что имеют не одну степень окисления и меняют её в зависимости от того, в какой формуле стоят. Согласно правилам сумма всех степеней также должна равняться нулю, но для её нахождения необходимо проделать некоторые вычисления. В письменном варианте это выглядит как просто алгебраическое уравнение, но со временем мы «набиваем руку», и не составляет труда составить и быстро выполнить весь алгоритм действий мысленно.

Разобраться на словах будет не так легко, и лучше сразу перейти к практике:

HNO3 - в данной формуле определить степень окисления азота (N). В химии мы и читаем названия элементов, и подходим к расставлению степеней окисления тоже с конца. Итак, известно, что СО кислорода -2. Мы должны умножить степень окисления на коэффициент справа (если он есть): -2*3=-6. Далее переходим к водороду (H): его СО в уравнении будет +1. Значит, чтобы в сумме СО давали ноль, нужно прибавить 6. Проверка: +1+6-7=-0.

Дополнительные упражнения можно будет найти в конце, но прежде всего нам требуется определить, какие элементы имеют переменную степень окисления. В принципе, все элементы, не считая первых трёх групп, меняют свои степени. Наиболее ярким примером служат галогены (элементы VII группы, не считая фтора F), IV группа и благородные газы. Ниже вы увидите перечень некоторых металлов и неметаллов с переменной степенью:

  • H (+1, -1);
  • Be (-3, +1, +2);
  • B (-1, +1, +2, +3);
  • C (-4, -2, +2, +4);
  • N (-3, -1, +1, +3, +5);
  • O (-2, -1);
  • Mg (+1, +2);
  • Si (-4, -3, -2, -1, +2, +4);
  • P (-3, -2, -1, +1, +3, +5);
  • S (-2, +2, +4, +6);
  • Cl (-1, +1, +3, +5, +7).

Это лишь небольшое количество элементов. Чтобы научиться определять СО, требуется изучение и практика, однако это не значит, что нужно заучивать все постоянные и переменные СО наизусть: просто запомните, что последние встречаются значительно чаще. Зачастую немалую роль играет коэффициент и то, какое вещество представлено - к примеру, в сульфидах отрицательную степень принимает сера (S), в оксидах - кислород (O), в хлоридах - хлор (Cl). Следовательно, в этих солях положительную степень принимает другой элемент (и называется в данной ситуации восстановителем).

Решение задач на определение степени окисления

Теперь мы подошли к самому главному - практике. Попробуйте выполнить следующие задания сами, а затем посмотрите разборку решения и сверьте ответы:

  1. K2Cr2O7 - найти степень хрома.
    СО у кислорода -2, у калия +1, а у хрома обозначим пока что как неизвестную переменную x. Суммарное значение равняется 0. Следовательно, составим уравнение: +1*2+2*x-2*7=0. После решения получаем ответ 6. Сделаем проверку - всё совпало, значит, задание решено.
  2. H2SO4 - найти степень серы.
    По той же концепции составляем уравнение: +2*1+x-2*4=0. Далее: 2+x-8=0.x=8-2; x=6.

Краткое заключение

Чтобы научиться определять степень окисления самостоятельно, вам нужно не только уметь составлять уравнения, но и основательно взяться за изучение свойств элементов различных групп, вспомнить уроки алгебры, составляя и решая уравнения с неизвестной переменной.
Не забывайте, что в правилах есть свои исключения и о них нельзя забывать: речь идёт об элементах с переменной СО. Также для решения многих задач и уравнений необходимо умение расставлять коэффициенты (и знать, с какой целью это делается).

Редакция "сайт"

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

ОПРЕДЕЛЕНИЕ

Число электронов, смещенных от атома данного элемента или к атому данного элемента в соединении называют степенью окисления .

Положительная степень окисления обозначает число электронов, которые смещаются от данного атома, а отрицательная - число электронов, которые смещаются к данному атому.

Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N 2 , H 2 , Cl 2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na +1 I -1 , Mg +2 Cl -1 2 , Al +3 F -1 3 , Zr +4 Br -1 4 .

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Высшая степень окисления

Для элементов, проявляющих в своих соединениях различные степени окисления, существуют понятия высшей (максимальной положительной) и низшей (минимальной отрицательной) степеней окисления. Высшая степень окисления химического элемента обычно численно совпадает с номером группы в Периодической системе Д. И. Менделеева. Исключения составляют фтор (степень окисления равна -1, а элемент расположен в VIIA группе), кислород (степень окисления равна +2, а элемент расположен в VIA группе), гелий, неон, аргон (степень окисления равна 0, а элементы расположены в VIII группе), а также элементы подгруппы кобальта и никеля (степень окисления равна +2, а элементы расположены в VIII группе), для которых высшая степень окисления выражается числом, значение которого ниже, чем номер группы, к которой они относятся. У элементов подгруппы меди, наоборот, высшая степень окисления больше единицы, хотя они и относятся к I группе (максимальная положительная степень окисления меди и серебра равна +2, золота +3).

Примеры решения задач

ПРИМЕР 1

Ответ Будем поочередно определять степень окисления серы в каждой из предложенных схем превращений, а затем выберем верный вариант ответа.
  • В сероводороде степень окисления серы равна (-2), а в простом веществе - сере - 0:

Изменение степени окисления серы: -2 → 0, т.е. шестой вариант ответа.

  • В простом веществе - сере — степень окисления серы равна 0, а в SO 3 - (+6):

Изменение степени окисления серы: 0 → +6, т.е. четвертый вариант ответа.

  • В сернистой кислоте степень окисления серы равна (+4), а в простом веществе - сере - 0:

1×2 +x+ 3×(-2) =0;

Изменение степени окисления серы: +4 → 0, т.е. третий вариант ответа.

ПРИМЕР 2

Задание Валентность III и степень окисления (-3) азот проявляет в соединении: а) N 2 H 4 ; б) NH 3 ; в) NH 4 Cl; г) N 2 O 5
Решение Для того, чтобы дать верный ответ на поставленный вопрос будем поочередно определять валентность и степень окисления азота в предложенных соединениях.

а) валентность водорода всегда равна I. Общее число единиц валентности водорода равно 4-м (1×4 = 4). Разделим полученное значение на число атомов азота в молекуле: 4/2 = 2, следовательно, валентность азота равна II. Этот вариант ответа неверный.

б) валентность водорода всегда равна I. Общее число единиц валентности водорода равно 3-м (1×3 = 3). Разделим полученное значение на число атомов азота в молекуле: 3/1 = 2, следовательно, валентность азота равна III. Степень окисления азота в аммиаке равна (-3):

Это верный ответ.

Ответ Вариант (б)

Степень окисления - условная величина, использующаяся для записи окислительно-восстановительных реакций. Для определения степени окисления используется таблица окисления химических элементов.

Значение

Степень окисления основных химических элементов основана на их электроотрицательности. Значение равно числу смещённых в соединениях электронов.

Степень окисления считается положительной, если электроны смещаются от атома, т.е. элемент отдаёт электроны в соединении и является восстановителем. К таким элементам относятся металлы, их степень окисления всегда положительная.

При смещении электрона к атому значение считается отрицательным, а элемент - окислителем. Атом принимает электроны до завершения внешнего энергетического уровня. Окислителями является большинство неметаллов.

Простые вещества, не вступающие в реакцию, всегда имеют нулевую степень окисления.

Рис. 1. Таблица степеней окисления.

В соединении положительную степень окисления имеет атом неметалла с меньшей электроотрицательностью.

Определение

Определить максимальную и минимальную степень окисления (сколько электронов может отдавать и принимать атом) можно по периодической таблице Менделеева.

Максимальная степень равна номеру группы, в которой находится элемент, или количеству валентных электронов. Минимальное значение определяется по формуле:

№ (группы) – 8.

Рис. 2. Таблица Менделеева.

Углерод находится в четвёртой группе, следовательно, его высшая степень окисления +4, а низшая - -4. Максимальная степень окисления серы +6, минимальная - -2. Большинство неметаллов всегда имеет переменную - положительную и отрицательную - степень окисления. Исключением является фтор. Его степень окисления всегда равна -1.

Следует помнить, что к щелочным и щелочноземельным металлам I и II групп соответственно, это правило не применимо. Эти металлы имеют постоянную положительную степень окисления - литий Li +1 , натрий Na +1 , калий K +1 , бериллий Be +2 , магний Mg +2 , кальций Ca +2 , стронций Sr +2 , барий Ba +2 . Остальные металлы могут проявлять разную степень окисления. Исключением является алюминий. Несмотря на нахождение в III группе, его степень окисления всегда +3.

Рис. 3. Щелочные и щелочноземельные металлы.

Из VIII группы высшую степень окисления +8 могут проявлять только рутений и осмий. Находящиеся в I группе золото и медь проявляют степень окисления +3 и +2 соответственно.

Запись

Чтобы правильно записывать степень окисления, следует помнить о нескольких правилах:

  • инертные газы не вступают в реакции, поэтому их степень окисления всегда равна нулю;
  • в соединениях переменная степень окисления зависит от переменной валентности и взаимодействия с другими элементами;
  • водород в соединениях с металлами проявляет отрицательную степень окисления - Ca +2 H 2 −1 , Na +1 H −1 ;
  • кислород всегда имеет степень окисления -2, кроме фторида кислорода и пероксида - O +2 F 2 −1 , H 2 +1 O 2 −1 .

Что мы узнали?

Степень окисления - условная величина, показывающая, сколько электронов принял или отдал атом элемента в соединении. Величина зависит от количества валентных электронов. Металлы в соединениях всегда имеют положительную степень окисления, т.е. являются восстановителями. Для щелочных и щелочноземельных металлов степень окисления всегда одинаковая. Неметаллы, кроме фтора, могут принимать положительную и отрицательную степень окисления.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 247.

Для подсчета степеней окисления имеется ряд простых правил:

  • Степень окисления элемента в составе простого вещества принимается равной нулю. Если вещество находится в атомарном состоянии, то степень окисления его атомов также равна нулю.
  • Ряд элементов проявляют в соединениях постоянную степень окисления. Среди них фтор (−1), щелочные металлы (+1), щелочноземельные металлы, бериллий, магний и цинк (+2), алюминий (+3).
  • Кислород, как правило, проявляет степень окисления −2 за исключением пероксидов $H_2O_2$ (−1) и фторида кислорода $OF_2$ (+2).
  • Водород в соединении с металлами (в гидридах) проявляет степень окисления −1, а в соединениях с неметаллами, как правило, +1 (кроме $SiH_4, B_2H_6$).
  • Алгебраическая сумма степеней окисления всех атомов в молекуле должна быть равной нулю, а в сложном ионе - заряду этого иона.
  • Высшая положительная степень окисления равна, как правило, номеру группы элемента в периодической системе. Так, сера (элемент VIA группы), проявляет высшую степень окисления +6, азот (элемент V группы) - высшую степень окисления +5, марганец - переходный элемент VIIБ группы - высшую степень окисления +7. Это правило не распространяется на элементы побочной подгруппы первой группы, степени окисления которых обычно превышают +1, а также на элементы побочной подгруппы VIII группы. Также не проявляют своих высших степеней окисления, равных номеру группы, элементы кислород и фтор.
  • Низшая отрицательная степень окисления для элементов-неметаллов определяется вычитанием номера группы из числа 8. Так, сера (элемент VIA группы), проявляет низшую степень окисления −2, азот (элемент V группы) - низшую степень окисления −3.

На основании приведенных выше правил можно найти степень окисления элемента в любом веществе.

Найти степень окисления серы в кислотах:

а) H$_2$SO$_3$,

б) H$_2$S$_2$O$_5$,

в) H$_2$S$_3$O$_{10}$.

Решение

Степень окисления водорода равна +1, кислорода −2. Обозначим степень окисления серы как x. Тогда можно записать:

$\overset{+1}{H}_2\overset{x}{S}\overset{-2}{O_3} $

$2\cdot$(+1) + x + 3$\cdot$(−2) = 0 x = +4

$\overset{+1}{H}_2\overset{x}{S}_2\overset{-2}{O_5}$

2$\cdot$(+1) + 2x + 5$\cdot$(−2) = 0 x = +4

$\overset{+1}{H}_2\overset{x}{S}_3\overset{-2}{O_10}$

2$\cdot$(+1) + 3x + 10$\cdot$(−2) = 0 x = +6

Таким образом, в первых двух кислотах степень окисления серы одинакова и равна +4, в последней кислоте +6.

Найти степень окисления хлора в соединениях:

б) $Ca(ClO_4)_2$,

в) $Al(ClO_2)_3$.

Решение

Сначала найдем заряд сложных ионов, в состав которых входит хлор, помня при этом, что молекула в целом электронейтральна.

$\hspace{1.5cm}\overset{+1}{H}\overbrace{ClO_3} \hspace{2.5cm} \overset{+2}{Ca}\overbrace{(ClO_4)_2} \hspace{2.5cm} \overset{+3}{Al}\overbrace{(ClO_2)_3} $

$\hspace{1.5cm}$+1 +x = 0 $\hspace{2.3cm}$ +2 +2x = 0 $\hspace{2.5cm}$ +3 + 3x = 0

$\hspace{1.5cm}$x = - 1 $\hspace{2.7cm}$ x = - 1 $\hspace{2.9cm}$ x = - 1

$\hspace{1.5cm}(\overset{x}{Cl} \overset{-2}{O_3})^{-1} \hspace{2.4cm} (\overset{x}{Cl} \overset{-2}{O_4})^{-1} \hspace{2.7cm} (\overset{x}{Cl} \overset{-2}{O_2})^{-1}$

$\hspace{0.5cm}1 \cdot x + 3\cdot (−2) = -1 \hspace{0.9cm}1 \cdot x + 4\cdot (−2) = -1 \hspace{1.2cm}1 \cdot x + 2\cdot (−2) = -1$

$\hspace{1.5cm} x = +5 \hspace{2.8cm} x = +7 \hspace{3.2cm} x = +3$

АЛГОРИТМ ВЫЧИСЛЕНИЯ ВАЛЕНТНОСТИ ЭЛЕМЕНТА В СОЕДИНЕНИИ

Зачастую численные значения степени окисления и валентности совпадают. Однако в некоторых соединениях, например в простых веществах, их значения могут различаться.

Так, молекула азота образована двумя атомами азота, связанными тройной связью. Связь образована тремя общими электронными парами за счет присутствия трех неспаренных электронов на 2p-подуровне атома азота. То есть валентность азота равна трем. В то же время $N_2$ - простое вещество, а значит, степень окисления этой молекулы равна нулю.

Аналогично, в молекуле кислорода валентность равна двум, а степень окисления - 0; в молекуле водорода валентность - I, степень окисления - 0.

Так же как в простых веществах, степень окисления и валентность часто отличаются в органических соединениях. Подробнее это будет рассмотрено в теме «ОВР в органической химии».

Для определения валентности в сложных соединениях сначала нужно построить структурную формулу. В структурной формуле одна химическая связь изображается одной «черточкой».

При построении графических формул нужно учитывать ряд факторов:


Для характеристики окислительно-восстановительной способности частиц важное значение имеет такое понятие, как степень окисления. СТЕПЕНЬ ОКИСЛЕНИЯ – это заряд, который мог бы возникнуть у атома в молекуле или ионе, если бы все его связи с другими атомами оказались разорваны, а общие электронные пары ушли с более электроотрицательными элементами.

В отличие от реально существующих зарядов у ионов, степень окисления показывает лишь условный заряд атома в молекуле. Она может быть отрицательной, положительной и нулевой. Например, степень окисления атомов в простых веществах равна «0» (,
,,). В химических соединениях атомы могут иметь постоянную степень окисления или переменную. У металлов главных подгруппI, II и III групп Периодической системы в химических соединениях степень окисления, как правило, постоянна и равна соответственно Ме +1 , Ме +2 и Ме +3 (Li + , Ca +2 , Al +3). У атома фтора всегда -1. У хлора в соединениях с металлами всегда -1. В подавляющем числе соединений кислород имеет степень окисления -2 (кроме пероксидов, где его степень окисления -1), а водород +1(кроме гидридов металлов, где его степень окисления -1).

Алгебраическая сумма степеней окисления всех атомов в нейтральной молекуле равна нулю, а в ионе – заряду иона. Эта взаимосвязь позволяет рассчитывать степени окисления атомов в сложных соединениях.

В молекуле серной кислоты H 2 SO 4 атом водорода имеет степень окисления +1, а атом кислорода -2. Так как атомов водорода два, а атомов кислорода четыре, то мы имеем два «+» и восемь «-». До нейтральности не хватает шесть «+». Именно это число и является степенью окисления серы -
. Молекула дихромата калияK 2 Cr 2 O 7 состоит из двух атомов калия, двух атомов хрома и семи атомов кислорода. У калия степень окисления всегда +1, у кислорода -2. Значит, мы имеем два «+» и четырнадцать «-». Оставшиеся двенадцать «+» приходятся на два атома хрома, у каждого из которых степень окисления равна +6 (
).

Типичные окислители и восстановители

Из определения процессов восстановления и окисления следует, что, в принципе, в роли окислителей могут выступать простые и сложные вещества, содержащие атомы, которые находятся не в низшей степени окисления и поэтому могут понижать свою степень окисления. Аналогично в роли восстановителей могут выступать простые и сложные вещества, содержащие атомы, которые находятся не в высшей степени окисления и поэтому могут повышать свою степень окисления.

К наиболее сильным окислителям относятся:

1) простые вещества, образуемые атомами, имеющими большую электроотрицательность, т.е. типичные неметаллы, расположенные в главных подгруппах шестой и седьмой групп периодической системы: F, O, Cl, S (соответственно F 2 , O 2 , Cl 2 , S);

2) вещества, содержащие элементы в высших и промежуточных

положительных степенях окисления, в том числе в виде ионов, как простых, элементарных (Fe 3+), так и кислородосодержащих, оксоанионов (перманганат-ион - MnO 4 -);

3) перекисные соединения.

Конкретными веществами, применяемыми на практике в качестве окислителей, являются кислород и озон, хлор, бром, перманганаты, дихроматы, кислородные кислоты хлора и их соли (например,
,
,
), азотная кислота (
), концентрированная серная кислота (
), диоксид марганца (
), пероксид водорода и пероксиды металлов (
,
).

К наиболее сильным восстановителям относятся:

1)простые вещества, атомы которых имеют низкую электроотрицательность («активные металлы»);

2) катионы металлов в низжих степенях окисления (Fe 2+);

3) простые элементарные анионы, например, сульфид-ион S 2- ;

4) кислородосодержащие анионы (оксоанионы), соответствующие низшим положительным степеням окисления элемента (нитрит
, сульфит
).

Конкретными веществами, применяемыми на практике в качестве восстановителей, являются, например, щелочные и щелочноземельные металлы, сульфиды, сульфиты, галогенводороды (кроме HF), органические вещества – спирты, альдегиды, формальдегид, глюкоза, щавелевая кислота, а также водород, углерод, моноксид углерода (
) и алюминий при высоких температурах.

В принципе, если в состав вещества входит элемент в промежуточной степени окисления, то эти вещества могут проявлять как окислительные, так и восстановительные свойства. Все зависит от

«партнера» по реакции: с достаточно сильным окислителем оно может реагировать как восстановитель, а с достаточно сильным восстановителем – как окислитель. Так, например, нитрит-ион NO 2 - в кислой среде выступает в роли окислителя по отношению к иону I - :

2
+ 2+ 4HCl→ + 2
+ 4KCl + 2H 2 O

и в роли восстановителя по отношению к перманганат-иону MnO 4 -

5
+ 2
+ 3H 2 SO 4 → 2
+ 5
+K 2 SO 4 + 3H 2 O

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Практический журнал для бухгалтеров о расчете заработной платы