Практический журнал для бухгалтеров о расчете заработной платы

Повреждающеедействие на организм человека ионизирующих излучений вызывает необходимость защиты от него как персонала рентгеновских кабинетов, так и пациентов при рентгенодиагностике. Уровень безопасного воздействия излучения на организм человека напрямую связан с понятием предельно допустимых доз облучения (ПДД). ПДД - это наибольшее значение индивидуальной дозы, полученной при облучении за год, которая при равномерном воздействии в течение 50 лет не вызывает у человека каких-нибудь патологических изменений. Различают ПДД для 3 группы радиочувствительных органов:

1 группа - ПДД – 5 бэр в год – все тело, половые органы, красный костный мозг.

2 группа - ПДД – 15 бэр в год – мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, ЖКТ, легкие, хрусталик глаза.

3 группа - ПДД – 30 бэр в год – кожа, костная ткань, кисти, предплечья, лодыжки, стопы.

Способы защиты от рентгеновского излучения:

1. Защита экранированием:

а) стационарные средства: баритовая штукатурка стен кабинетов, двери с листовым свинцовым покрытием, просвинцованное стекло в смотровых окнах;

б) передвижные: защитные ширмы, так же с листовым свинцовым покрытием;

в) индивидуальные средства: фартуки, перчатки, колпаки и бахилы из просвинцованной резины для персонала и покрытие из просвинцованной резины для защиты наиболее чувствительных тканей пациента во время проведения различных методов диагностики.

2. Защита расстоянием – расположение рабочих мест персонала с максимальным удалением их от источника излучения, максимально возможное расстояние между рентгеновской трубкой и кожей пациента (кожно-фокусное расстояние). При увеличении этого расстояния вдвое, доза поглощённой радиации уменьшается в четыре раза.

3. Защита временем - сокращение времени облучения снижает поглощённую суммарную дозу. В связи с этим существует строгая регламентация рабочего времени дня рентгенолога и время проведения рентгендиагностических процедур. Так при рентгенографии экспозиция длится в среднем до 1-3 секунд, при рентгеноскопии грудной клетки – до 5 минут, а при рентгеноскопии желудка - до 10 минут.

Основными принципами радиационной защиты пациентов являются:

Проведение исследований по строгим показаниям;

Исключение дублирующих друг друга повторных исследований;

Высокая квалификация персонала, проводящего исследования;

Использование исправного диагностического оборудования;

Применение индивидуальных средств защиты для участков тела, находящихся вне зоны облучения (гонады, щитовидная железа, молочная железа, хрусталик);

Правильное позиционирование пациентов, ограничение зоны облучения и времени воздействия излучения.

Контроль лучевой нагрузки пациента по индивидуальной дозиметрии.

Доза излучения должна быть достаточной для получения качественных изображений.

Уровни облучения персонала отделений лучевой диагностики не должны превышать 20 мЗв в год. Для людей, находящихся рядом с кабинетами лучевой диагностики или оказывающими помощь при исследованиях, доза облучения не должна превышать 5 мЗв в год.

На персонал, работающий в отделениях лучевой диагностики, чаще воздействует вторичное излучение, которое образуется в связи с рассеянием прямого пучка, проходящего через тело пациента, и элементы конструкции оборудования. Интенсивность вторичного излучения в 100-1000 раз меньше, чем первичного, но оно распространяется во всех направлениях. Защита персонала отделений лучевой диагностики, обеспечивается следующими факторами:

Использованием средств радиационной защиты (ширмы, экраны, очки, перчатки, фартуки и пр.);

Специальной планировкой и защитой кабинетов рентгенодиагностики и пультовых;

Постоянным обучением персонала правилам и принципам радиационной безопасности;

Допуск к работе только сертифицированных врачей-радиологов и рентгенолаборантов;

Проведение регулярного радиационного и дозиметрического контроля.

Ультразвуковой метод исследования

Ультразвуковой метод диагностики - это способ получения изображения органов на основе регистрации и компьютерного анализа отражённых от биологических структур ультразвуковых волн. Ультразвук – это звуковые колебания выше 20кГц. Физической основой ультразвука является пьезоэлектрический эффект открытый братьями Кюри в 1881 году. В 20-30 года ХХ века С.Я. Соколов разработал и внедрил ультразвуковую промышленную дефектоскопию. В это же время были первые попытки использования УЗИ в медицине, но наиболее широко данный метод стал использоваться в 60 годы за рубежом и с 70-80 – х годов в России.

Сущность пьезоэлектрического эффекта заключается в том, что при деформации монокристаллов некоторых химических соединений (кварц, титанат бария, сернистый кадмий) под действием ультразвуковых волн на их поверхности возникают противоположные по знаку электрические заряды. И, наоборот, при подаче на эти кристаллы электрического тока в них возникают механические колебания с излучением ультразвуковых волн. Таким образом, пьезоэлемент может одновременно играть роль источника и служить приёмником ультразвуковых волн. Эту часть аппарата УЗИ называют акустическим преобразователем, трансдюсером или датчиком. Высокочастотные колебания обладают более высокой разрешающей способностью. В медицине используют частоты 2-10 МГц. При этом разрешающая способность УЗИ составляет 1-3 мм.

Любая ткань препятствует распространению ультразвука, то есть обладают различным акустическим сопротивлением (импедансом). При распространении ультразвука в неоднородных тканях на границе двух сред одна часть волн продолжает своё движение и постепенно поглощается тканями, а другая часть волн отражается. Чем выше плотность ткани, тем больше волн отражается, а на экране дисплея появляется более интенсивная и яркая белая картинка. Полным отражателем является граница между тканями и воздухом. Поверхностно расположенные структуры исследуют с частотой 7,5 МГц и выше, а глубоко расположенные структуры исследуют с частотой 3,5 МГц.

Методики УЗИ

1. УЗИ в В-режиме – это получение информации в виде двухмерных серошкальных томографических изображений анатомических структур в масштабе реального времени. Биологические структуры отличают по их эхогенности. Анэхогенные образования (заполнены жидкостью) выглядят на экране чёрными, гипоэхогенные (ткани с высокой гидрофильностью) серо-чёрные. Эхопозитивным является большинство тканей, и они дают серый цвет. Ткани с повышенной эхогенностью (плотные ткани) выглядят на экране светло серыми. А гиперэхогенные объекты полностью отражают ультразвук и на экране выглядят белыми при этом вслед за ними появляется тёиная дорожка (акустическая тень). Современные аппараты УЗИ выводят на экран множество изображений, каждое из которых длится сотую долю секунды, что позволяет получить меняющееся изображение органа в реальном масштабе времени.

2. УЗИ в М-режиме – это одномерное эхоскопическое изображение органа. Получаемое изображение отражает изменение положения части органа во времени. Чаще всего такой режим используют при эхографии сердца и его клапанов.

3. Допплерография - методика, основанная на эффекте Доплера, сущность которого состоит в том, что при движении объекта в сторону датчика частота сигнала увеличивается, а при удалении от источника - уменьшается. Виды допплерографии:

а) потоковая спектральная допплерография – оценка кровотока в крупных сосудах и камерах сердца, запись которого представляет собой спектрограмму,

б) цветное допплеровское картирование – позволяет определить направление тока крови в сосуде (красный - к датчику, а синий - от датчика).

в) энергетическая допплерография –позволяет оценить плотность эритроцитов в заданном объёме ткани и дифференцировать кровоснабжаемые и некровоснабжаемые ткани.

г) конвергентная цветовая допплерография – сочетание методики цветного допплеровского картирования и энергетического допплера (б+в).

д) дуплексное исследование – сочетание УЗИ в В-режиме, с потоковым и энергетическим цветовым картированием.

е) трёхмерное допплеровское картирование и трёхмерная энергетическая допплерография – это методики, дающие возможность наблюдать объёмную картину пространственного расположения кровеносных сосудов в режиме реального времени.

4. Эхоконтрастные методы УЗ-исследования. Эта методика основана на внутривенном введении ультразвукового контраста, включающего свободные микропузырьки газа диаметром менее 5 мм и сохраняющих стабильность в системном кровотоке более 5 минут.

5. Эндоскопическое УЗИ. Данный метод УЗИ позволяет определить эхоструктуру объёмных образований или стенки полого органа в ходе эндоскопического исследования. Методика позволяет оценить степень прорастания опухоли в стенку органа.

6. Интракорпоральное УЗИ – трансректальное, трансвагианльное, трасэзофагеально, трансуретрально и т.д.

Клиническое использование УЗИ: плановые исследования паренхиматозных органов, неотложная диагностика травм и заболеваний брюшной полости, патология сердца, гнойные заболевания мягких тканей и полостей организма, мониторинг состояния того или иного органа в процессе лечения и после операции, интраоперационная диагностика патологии и степени распространённости процесса, исследование суставов, позвоночного столба, допплерография магистральных и интракраниальных сосудов, артерий и вен среднего калибра. Методики УЗИ широко используется в акушерстве и гинекологии для пренатальной диагностики врождённых аномалий и патологии плода, а также для диагностики заболеваний и опухолей женской половой сферы.

Современные рентгеновские установки - цифровое поколение, они значительно отличаются от своих предков. Отличия прибора не только внешние, значительно выше стало качество фиксируемых на пленке данных. Доза облучения, получаемая при обследовании на новом аппарате, на порядок ниже.

Именно поэтому при назначении рентгеновского обследования выбирайте клинику с цифровой аппаратурой. Существуют и профилактические плановые исследования, которые делают регулярно. С 15-ти лет всем людям нужно ежегодно делать снимок грудной клетки, а женщинам старше 40 лет - маммографию.

О дозе облучения

Рентгеновские исследования нужно проводить только по показаниям . Если врач считает нужным для спасения жизни пациента назначить вторую, третью или шестую процедуру, значит, она необходима. Здесь не существует понятия «предельно допустимая доза».

При ежегодных обследованиях грудной клетки - флюорографии и маммографии человек получает 0,8 мЗв (миллизивертов). Это на рентгеновском аппарате, а эта цифра больше. Рентген в стоматологии - всего 0,1 мЗв. Конечно, даже эти дозы не приносят никакой пользы организму человека. Но если исследование помогает избежать значительно большего зла, лучше его пройти.

Регулярное обследование грудной клетки позволяет избежать вспышек массового заболевания туберкулезом, так как больные вовремя выявляются. Женщинам, переступившим рубеж сорокалетия, стоит проявить дисциплинированность и , чтобы сохранить жизнь и здоровье.

Как защититься от облучения

Есть три распространенных метода защиты от облучения рентгеновскими лучами при обследовании: время, расстояние и экранирование. Таким образом, под лучами нужно находиться как можно меньше времени, как можно дальше или защищаться специальными фартуком, юбкой, воротником, шапочкой с прослойками свинца.

Если вы находитесь в подростковом возрасте гормональной перестройки, нужно защищать от излучения паховую область. Рентгеновское излучение приносит больше всего вреда клеткам крови и половым. Дети должны быть защищены практически целиком, открытой остается только область исследования.

Не стоит и флюорографию в один день. В идеале у каждого пациента должна быть радиационная карточка, куда врач заносит информацию об обследовании и полученную дозу. Нежелательно проводит рентгеновское исследование во время беременности, но при переломах без этого обойтись нельзя.

Врач- рентгенолог отвечает за защиту больных, а также персонала, как внутри кабинета, так и людей, находящихся в смежных помещениях. Могут быть коллективные и индивидуальные средства защиты.

3 основных способа защиты: защита экранированием, расстоянием и временем.

1 .Защита экранированием:

На пути рентгеновских лучей помещаются специальные устройства, сделанные из материалов, хорошо поглощающих рентгеновские лучи. Это может быть свинец, бетон, баритобетон и т.д. Стены, пол, потолок в рентгенкабинетах защищены, сделаны из материалов, не пропускающих лучи в соседние помещения. Двери защищены просвинцованным материалом. Смотровые окна между рентгенкабинетом и пультовой делаются из просвинцованного стекла. Рентгеновская трубка помещена в специальный защитный кожух, не пропускающий рентгеновских лучей и лучи направляются на больного через специальное "окно". К окну прикреплен тубус, ограничивающий величину пучка рентгеновских лучей. Кроме того, на выходе лучей из трубки устанавливается диафрагма рентгеновского аппарата. Она представляет собой 2 пары пластин, перпендикулярно расположенных друг к другу. Эти пластины можно сдвигать и раздвигать как шторки. Тем самым можно увеличить или уменьшить поле облучения. Чем больше поле облучения, тем больше вред, поэтому диафрагмирование - важная часть защиты, особенно у детей. К тому же и сам врач облучается меньше. Да и качество снимков будет лучше. Еще один пример зашиты экранированием - те части тела исследуемого, которые в данный момент не подлежат съёмке, должны быть прикрыты листами из просвинцованной резины. Имеются также фартуки, юбочки, перчатки из специального защитного материала.

2 .Защита временем:

Больной должен облучаться при рентгенологическом исследовании как можно меньшее время (спешить, но не в ущерб диагностике). В этом смысле снимки дают меньшую лучевую нагрузку, чем просвечивание, т.к. на снимках применяется очень маленькие выдержки (время). Защита временем - это основной способ зашиты и больного и самого врача- рентгенолога. При исследовании больных врач, при прочих равных условиях, старается выбирать метод исследования, на которое уходит меньше времени, но не в ущерб диагностике. В этом смысле от рентгеноскопии больший вред, но, к сожалению, без рентгеноскопии часто невозможно обойтись. Taк при исследовании пищевода, желудка, кишечника применяются оба метода. При выборе метода исследования руководствуемся правилом, что польза от исследования должна быть больше, чем вред. Иногда из-за боязни сделать лишний снимок возникают ошибки в диагностике, неправильно назначается лечение, что иногда стоит жизни больного. О вреде излучения надо помнить, но не надо его бояться, это хуже для больного.

3 .Защита расстоянием:

Согласно квадратичному закону света освещенность той или иной поверхности обратно пропорциональна квадрату расстояния от источника света до освещаемой поверхности. Применительно к рентгенологическому исследованию это значит, что доза облучения обратно пропорциональна квадрату расстояния от фокуса рентгеновской трубки до больного (фокусное расстояние). При увеличении фокусного расстояния в 2 раза доза облучения уменьшается в 4 раза, при увеличении фокусного расстояния в 3 раза доза облучения уменьшается в 9 раз.

Не разрешается при рентгеноскопии фокусное расстояние меньше 35 см. Расстояние от стен до рентгеновского аппарата должно быть не менее 2 м, иначе образуются вторичные лучи, которые возникают при попадании первичного пучка лучей на окружающие объекты (стены и т.д.). По этой же причине в рентген-кабинетах не допускается лишняя мебель. Иногда при исследовании тяжелых больных, персонал хирургического и терапевтического отделений помогает больному встать за экран для просвечивания и стоят во время исследования рядом с больным, поддерживают его. Как исключение это допустимо. Но врач-рентгенолог должен следить, чтобы помогающие больному сестры и санитарки надевали защитный фартук и перчатки и, по возможности, не стояли близко к больному (защита расстоянием). Если в рентген-кабинет пришли несколько больных, они вызываются в процедурную по 1 человеку, т.е. в данный момент исследования должен быть только 1 человек.

Узнать стоимость услуги - отправить заявку


Администрация рентгенотерапевтического или рентгенодиагностического кабинета обязана обеспечивать меры по защите сотрудников и населения от воздействия радиационных факторов, в том числе за счет обеспечения кабинета средствами радиационной защиты.

Согласно СанПиН 2.6.1.1192-03, в медицинской сфере используют три вида средств защиты от радиационного излучения:

  • стационарные средства;
  • передвижные (мобильные) средства;
  • средства индивидуальной защиты.

Перечень и количество обязательных средств защиты для рентгеновских кабинетов разного профиля приведен в таблице.

Средства защиты необходимы для предотвращения превышения предельных доз облучения при проведении рентгенодиагностических и рентгенотерапевтических процедур.

Предельные дозы облучения для персонала и пациентов рентген-кабинета

В СанПиН.6.1.1192-03 устанавливаются эквивалентные и эффективные дозы облучения для сотрудников рентгеновских кабинетов и населения. Они приведены в таблице.

Стационарные средства радиационной защиты

В группу стационарных средств защиты рентгеновского кабинета входят потолок, пол, стены, смотровые окна, защитные двери, ставни и другие конструктивные элементы помещения. Их задача - снижать рентгеновского излучение до показателей, не превышающих предельные дозы допустимого излучения для сотрудников медицинского учреждения и пациентов.

Стационарную защиту рентген-кабинетов выпускают из материалов с соответствующими конструктивными и защитными свойствами, отвечающих санитарно-гигиеническим нормативам.

Степень защиты стационарных средств выражается в свинцовых эквивалентах. Свинцовые эквиваленты строительных материалов, которые используются в строительстве рентгеновских кабинетов, представлены в Приложении 9 к СанПиН 2.6.1.1192-03.

Допустимые показатели мощности радиационного излучения за объектами стационарной защиты приводятся в таблице.

Передвижные и индивидуальные средства радиационной защиты

В группу мобильных средств радиационной защиты включают:

  • Большую и малую защитные ширмы для персонала. Большая может иметь от 1 до 3 створок и используется для защиты от излучения всего тела (минимальный показатель свинцового эквивалента - 0,25 мм, Pb). Малая применяется для защиты нижней части тела (минимальный показатель свинцового эквивалента - 0,5 мм, Pb).
  • Малую защитную ширму для пациента. Защищает от рентгеновских лучей нижнюю часть тела (минимальный показатель свинцового эквивалента - 0,5 мм, Pb).
  • Поворотный защитный экран. Защищает отдельные части тела в разных положениях: сидя, стоя, лежа (минимальный показатель свинцового эквивалента - 0,5 мм, Pb).
  • Защитную штору. Защищает от рентгеновских лучей все тело, может использоваться как аналог защитной ширмы (минимальный показатель свинцового эквивалента - 0,25 мм, Pb).

Индивидуальная защита от рентгеновских лучей обеспечивается следующими средствами:

  • Шапочкой, которая защищает от рентгеновских лучей голову (минимальный показатель свинцового эквивалента - 0,25 мм, Pb).
  • Очками для радиационной защиты глаз (минимальный показатель свинцового эквивалента - 0,25 мм, Pb).
  • Воротником, который предназначен для защиты области шеи и щитовидной железы (минимальный показатель свинцового эквивалента для тяжелого воротника - 0,35 мм, Pb, для легкого- 0,25 мм, Pb). Используется самостоятельно или вместе с жилетами и фартуками, у которых есть вырез на шее.
  • Пелериной (накидкойа) для радиационной защиты верхней части груди и плечевого пояса (минимальный показатель свинцового эквивалента - 0,35 мм, Pb).
  • Односторонним фартуком, защищающим переднюю части тела от голеней до шеи (минимальный показатель свинцового эквивалента для легкого фартука - 0,25 мм, Pb, для тяжелого - 0,35 мм, Pb).
  • Двусторонним фартуком для радиационной защиты передней части тела от голеней до шеи и сзади от бедер до лопаток (минимальный показатель свинцового эквивалента для передней части - 0,35 мм, Pb, для остальных частей - 0,25 мм, Pb).
  • Стоматологическим фартуком, с помощью которого защищают от рентгеновских лучей переднюю часть тела при проведении исследований черепа и челюстно-лицевого аппарата (минимальный показатель свинцового эквивалента - 0,25 мм, Pb).
  • Жилетом для защиты от излучения органов грудной клетки от поясницы до области плеч (минимальный показатель свинцового эквивалента для легкого жилета спереди - 0,25 мм, Pb, сзади - 0,15 мм, Pb, для тяжелого - 0,35 мм, Pb спереди и 0,25 мм, Pb сзади).
  • Передником для защиты половых органов и костей таза (минимальный показатель свинцового эквивалента для тяжелого передника - 0,5 мм, Pb, для легкого - 0,35 мм, Pb).
  • Юбкой длиной не менее 35 см для защиты половых органов и костей таза со всех сторон (минимальный показатель свинцового эквивалента для тяжелой юбки - 0,5 мм, Pb, для легкой - 0,35 мм, Pb).
  • Перчатками для защиты от излучения нижней части предплечий, запястий и кистей рук (минимальный показатель свинцового эквивалента для тяжелых перчаток 0,25 мм, Pb, для легких - 0,15 мм, Pb).
  • Наборами защитных пластин разных форм для предупреждения облучения отдельных частей тела (минимальный показатель свинцового эквивалента - 1,0-0,5 мм, Pb).
  • Защитными средствами для половых органов (минимальный показатель свинцового эквивалента - 0,5 мм, Pb).
  • Защитными средствами для проведения рентгеновских исследований детей - пеленки с отверстиями и без, трусики (подгузники) (минимальный показатель свинцового эквивалента - 0,35 мм, Pb).

Как контролируется эффективность радиационной защиты рентген-кабинета?

Санитарные норм и правила требуют от медицинских учреждений контролировать соответствие уровня радиационной защиты стационарных, индивидуальных и передвижных средств установленным нормативам. Все защитные средства должны иметь маркировку, а также санитарно-эпидемиологические заключения, подтверждающие, что они могут применяться при проведении рентгеновских исследований.

Не реже 1 раза в 2 года аккредитованные организации осуществляют проверку средств радиационной защиты.

СК «ОЛИМП» поможет подобрать необходимые средства защиты для рентгеновского кабинета

Врач- рентгенолог отвечает за защиту больных, а также персонала, как внутри кабинета, так и людей, находящихся в смежных помещениях. Могут быть коллективные и индивидуальные средства защиты. В принципе меры защиты такие же, как и при воздействии любого вида ионизирующего излучения (в том числе α,β,γ-лучей).

3 основных способа защиты: защита экранированием, расстоянием и временем.

1 .Защита экранированием:

На пути рентгеновских лучей помещаются специальные устройства, сделанные из материалов, хорошо поглощающих рентгеновские лучи. Это может быть свинец, бетон, баритобетон и т.д. Стены, пол, потолок в рентгенкабинетах защищены, сделаны из материалов, не пропускающих лучи в соседние помещения. Двери защищены просвинцованным материалом. Смотровые окна между рентгенкабинетом и пультовой делаются из просвинцованного стекла. Рентгеновская трубка помещена в специальный защитный кожух, не пропускающий рентгеновских лучей и лучи направляются на больного через специальное "окно". К окну прикреплен тубус, ограничивающий величину пучка рентгеновских лучей. Кроме того, на выходе лучей из трубки устанавливается диафрагма рентгеновского аппарата. Она представляет собой 2 пары пластин, перпендикулярно расположенных друг к другу. Эти пластины можно сдвигать и раздвигать как шторки. Тем самым можно увеличить или уменьшить поле облучения. Чем больше поле облучения, тем больше вред, поэтому диафрагмирование - важная часть защиты, особенно у детей. К тому же и сам врач облучается меньше. Да и качество снимков будет лучше. Еще один пример зашиты экранированием - те части тела исследуемого, которые в данный момент не подлежат съёмке, должны быть прикрыты листами из просвинцованной резины. Имеются также фартуки, юбочки, перчатки из специального защитного материала.

2 .Защита временем:

Больной должен облучаться при рентгенологическом исследовании как можно меньшее время (спешить, но не в ущерб диагностике). В этом смысле снимки дают меньшую лучевую нагрузку, чем просвечивание, т.к. на снимках применяется очень маленькие выдержки (время). Защита временем - это основной способ зашиты и больного и самого врача- рентгенолога. При исследовании больных врач, при прочих равных условиях, старается выбирать метод исследования, на которое уходит меньше времени, но не в ущерб диагностике. В этом смысле от рентгеноскопии больший вред, но, к сожалению, без рентгеноскопии часто невозможно обойтись. Taк при исследовании пищевода, желудка, кишечника применяются оба метода. При выборе метода исследования руководствуемся правилом, что польза от исследования должна быть больше, чем вред. Иногда из-за боязни сделать лишний снимок возникают ошибки в диагностике, неправильно назначается лечение, что иногда стоит жизни больного. О вреде излучения надо помнить, но не надо его бояться, это хуже для больного.

3 .Защита расстоянием:

Согласно квадратичному закону света освещенность той или иной поверхности обратно пропорциональна квадрату расстояния от источника света до освещаемой поверхности. Применительно к рентгенологическому исследованию это значит, что доза облучения обратно пропорциональна квадрату расстояния от фокуса рентгеновской трубки до больного (фокусное расстояние). При увеличении фокусного расстояния в 2 раза доза облучения уменьшается в 4 раза, при увеличении фокусного расстояния в 3 раза доза облучения уменьшается в 9 раз.

Не разрешается при рентгеноскопии фокусное расстояние меньше 35 см. Расстояние от стен до рентгеновского аппарата должно быть не менее 2 м, иначе образуются вторичные лучи, которые возникают при попадании первичного пучка лучей на окружающие объекты (стены и т.д.). По этой же причине в рентген-кабинетах не допускается лишняя мебель. Иногда при исследовании тяжелых больных, персонал хирургического и терапевтического отделений помогает больному встать за экран для просвечивания и стоят во время исследования рядом с больным, поддерживают его. Как исключение это допустимо. Но врач-рентгенолог должен следить, чтобы помогающие больному сестры и санитарки надевали защитный фартук и перчатки и, по возможности, не стояли близко к больному (защита расстоянием). Если в рентген-кабинет пришли несколько больных, они вызываются в процедурную по 1 человеку, т.е. в данный момент исследования должен быть только 1 человек.

Конец работы -

Эта тема принадлежит разделу:

Физические основы лучевой диагностики

Тема физические основы лучевой диагностики.. план понятие о лучевой диагностике.. рентгеновские лучи и их свойства..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие о лучевой диагностике
Лучевая диагностика - диагностическая дисциплина, которая объединяет в себе ряд диагностических методов, а именно: 1. Классический рентгенологический метод, который существует уже 113 лет,

Рентгеновские лучи и их свойства
Рентгеновские лучи были открыты в 1895 году немецким физиком Вильгельмом Конрадом Рентгеном. В иностранной (англоязычной литературе) их часто называют Х-лучами (Х-ray). Рентгеновские лучи

Рентгеновская трубка и получение рентгеновских лучей
Рентгеновские лучи получаются в рентгеновской трубке. Рентгеновская трубка представляет собой стеклянный баллон, внутри которого вакуум. Имеются 2 электрода - катод и анод. Катод - тонкая вольфрамо

Свойства рентгеновских лучей
Разберем только те свойства, которые имеют значение в практической работе врача рентгенолога. 1. Большая проникающая способность - способность проходить через плотные объе

Устройство рентгеновского кабинета
Существует много различных типов рентгеновских аппаратов, поэтому устройство рентген-кабинетов может быть в деталях различным, особенно сейчас - в век высоких технологий. Но все аппараты в принципе

Методы рентгенологического исследования
Их много. Все они подразделяются на основные и специальные. К основным относятся рентгеноскопия (просвечивание и рентгенография). Рентгенологическое исследование больного всегд

Рентгенография (снимки)
Чаще всего снимки делаются на рентгеновской пленке (о ней мы говорили выше). Они могут также выполняться на флюорографической пленке (ФОГ) и на селеновых пластинах - электрорентгенография

Особенности рентгеновского изображения
1. Рентгеновское изображение плоскостное. Чтобы получить объемное представление об органе, приходится делать снимки минимум в 2 проекциях - прямой и боковой (или косой).

IX. Оценка качества полученных рентгенограмм
1) Информативность снимка. Врач должен иметь возможность судить о наличии или отсутствии патологических изменений на рентгенограмме. 2) Полнота охвата исследуемой области. Так, на снимке г

Методы рентгенологического исследования легких
Методы лучевой диагностики, наиболее часто применяемые при исследовании легких - рентгеноскопия и рентгенография, ФОГ, обычная (линейная) томография, ангиопульмонография, бронхография. При

Затемнение
Наиболее частый симптом, он бывает при любом уплотнении легочной ткани: при пневмониях, опухолях, туберкулезе, наличие жидкости в плевральной полости, при разрастании соединительной ткани и т.д. За

Изменения легочного рисунка
Чаще всего при описании рентгеновских снимков встречаемся с термином усиленный легочный рисунок. Бывает также бедный легочный рисунок, деформированный легочный рисунок, отсутствие легочного

Синдром просветления
Пневмоторакс – это наличие воздуха между париетальным и висцеральным листком плевры. Причины пневмоторакса различны: может быть травматический пневмоторакс, или же воздух поступает в плевральную по

Синдром обширного затемнения
Обширным называется затемнение, занимающее все легочное поле или большую его часть (более половины легкого). Оно может быть обусловлено различными патологическими процессами. Наиболее часто встреча

Стафилококковые и стрептококковые пневмонии
Составляют около 10% общего количества пневмоний у взрослых. В основном эта форма пневмоний бывает у детей, особенно новорожденных и грудных. Различают первичные и вторичные пневмонии. По

Пневмония Фридлендера
Это разновидность долевой пневмонии. Одна из наиболее тяжелых форм пневмонии. Чаще бывает у ослабленных людей, у детей и пожилых. Вызывается палочкой Фридлендера (Klebsiella pneumoniae). Устойчива

Болезнь легионеров
Эта разновидность острой пневмонии открыта и изучена недавно. Она вызывается грамотрицательной бактерией, не относящейся ни к одному из известных видов (Legionella pneumophilia). Для этого

Вирусные пневмонии
Сюда относят острую интерстициальную пневмонию, гриппозную пневмонию, орнитозную, аденовирусную и др. Вирусные пневмонии - это группа более или менее схожих заболеваний, вызываемых различн

Пневмония при аденовирусах
Некоторые из аденовирусов могут вызывать пневмонии. Для этих пневмоний характерна выраженная реакция лимфоузлов корней легких и усиление легочного рисунка, особенно в прикорневых отделах. На этом ф

Орнитозная или пситаккозная пневмония
Возбудитель орнитоза - фильтрующийся вирус. Человек заражается чаще всего при контакте с домашними или дикими птицами на птицефермах, в домашних условиях от попугаев, канареек и т.д. Зараж

Микоплазменные пневмонии
Как самостоятельная нозологическая форма эта пневмония выделена относительно недавно. Возбудитель пневмонии - Micoplasma pneumonia - самый маленький из известных микроорганизмов, занимает промежуто

Инфарктная пневмония
Возрастает число тромбоэмболии ЛА. Тромбоэмболия ветвей ЛА способствует развитию вторичной инфарктной пневмонии. В большинстве случаев эмболия легких является следствием флебитов различной

Пневмония при нарушении бронхиальной проходимости
При нарушении проходимости бронхов возникает гиповентиляция сегмента, доли или легкого и тем самым создаются благоприятные условия для развития вторичной пневмонии. Большое практическое зн

Аспирационные пневмонии
При аспирации различных веществ в бронхи создаются благоприятные условия для размножения микробов и возникновения пневмонии. Причины аспирации различны - нарушение акта глотания (при опухоли глотки

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Практический журнал для бухгалтеров о расчете заработной платы