Практический журнал для бухгалтеров о расчете заработной платы

Достигает значений, вызывающих разрушающее воздействие на окружающие предметы и опасна для человека.

По определению, в зону теплового воздействия входит то расстояние, на котором температура воздуха и продуктов горения достигает отметки более 60-80 °С. Воздухообмен во время пожара активнее, нежели в спокойное время. Холодный и горячий воздух смешивается с продуктами горения. Этот процесс и заставляет его двигаться. Как уже было упомянуто выше, продукты горения, вместе с горячим воздухом поднимаются вверх, давая дорогу, более плотному, холодному воздуху. Который, в свою очередь, попадая в очаг возгорания, раздувает его ещё сильнее. Когда пожар происходит внутри здания, важным фактором его интенсивности является пространство, на котором распространяется пожар. Здесь важными вещами является расположение проёмов в стенах, межкомнатных перекрытий (в том числе и материалы, из которых они изготовлены). Высота помещения тоже играет важную роль, так же как состав и количество потенциально горящих предметов в этом помещении.

Понять в какую сторону будет распространяться пожар не так сложно, главное определить направление воздушних путей, вызванных пожаром. Горячий воздух может разносить искры , которые, в свою очередь образуют новый очаг возгорания, например, в зоне задымления . Так как остаются продукты неполного сгорания, они являются причинами газовых взрывов (во время взаимодействия с кислородом).

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Зона теплового воздействия" в других словарях:

    зона теплового воздействия - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN thermally affected zoneTAZ …

    Наивысшая из разрешённых энергетических зон электронов твердого тела, в которой при температуре 0 К все энергетические состояния заняты (см. Зонная теория). При Т>0 К образующиеся в валентной зоне дырки участвуют в электропроводности. Понятие… … Энциклопедический словарь

    Агардакская офиолитовая зона, расположенная в южной Туве, в структурном отношении представляет собой шовную зону восток северо восточного простирания, разделяющую Таннуольскую островодужную систему ордовикского возраста (на северо западе) и… … Википедия

    У этого термина существуют и другие значения, см. Пространство (значения). Пространство, в котором развивается неконтролируемый процесс горения (пожар), вследствие которого причиняется материальный ущерб, вред жизни и здоровью людей, интересам… … Википедия

    У этого термина существуют и другие значения, см. Пожар (значения). Борьба с пожаром … Википедия

    Heat-affected zone - Зона термического [теплового] воздействия … Краткий толковый словарь по полиграфии

    термического влияния (в электроэрозионной обработке) - зона термического влияния Поверхностный слой металла электрода заготовки или электрода инструмента с измененными в результате теплового воздействия при электроэрозионной обработке структурой и свойствами [ГОСТ 25331 82] Тематики обработка… … Справочник технического переводчика

    - (a. interbedding combustion; н. in situ Verbrennung, Flozbrand; ф. combustion in situ; и. combustion in situ, combustion en el interior de la capa) способ разработки нефт. м ний, основанный на экзотермич. окислит. реакциях углеводородов,… … Геологическая энциклопедия

    Ов; мн. (ед. полупроводник, а; м.). Физ. Вещества, которые по электропроводности занимают промежуточное место между проводниками и изоляторами. Свойства полупроводников. Производство полупроводников. // Электрические приборы и устройства,… … Энциклопедический словарь

    ГОСТ Р ЕН 12957-2007: Безопасность металлообрабатывающих станков. Станки электроэрозионные - Терминология ГОСТ Р ЕН 12957 2007: Безопасность металлообрабатывающих станков. Станки электроэрозионные: 3.3. автоматический режим (automatic mode): Использование системы числового программного управления (ЧПУ) для автоматического управления… … Словарь-справочник терминов нормативно-технической документации

Соотношение (3.12) используется как для определœения интенсивности облучения J * на различных расстояниях от горящего объекта͵ так и для нахождения безопасных в противопожарном отношении расстояний между зданиями, сооружениями (противопожарных разрывов) и определœения зоны теплового воздействия.

Безопасные расстояния между зданиями, сооружениями r кр , м , определяют, разрешая соотношение (3.12) относительно r и заменяя величину J * на J min

В этом соотношении J min – минимальная интенсивность облучения, превышение которой приводит к возгоранию рассматриваемого объекта͵ Дж/м 2 ·c ; c 0 – коэффициент, численное значение которого в условиях обычных пожаров допускается принимать равным 3,4 ккал/м· 2 ·ч 4 или 3,96Дж/м 2 ·с· 4 ; T ф – температура факела пламени, K (см. табл. 12), величины y 1 , y 2 , F ф находятся согласно рекомендациям предыдущего параграфа.

Расчёт температуры T п опирается на решение задачи о распространении тепла по нагреваемой конструкции, ĸᴏᴛᴏᴩᴏᴇ замыкается экспе­риментальными данными.

Как известно, процесс передачи тепла в твёрдом телœе описывается уравнением теплопроводности Фурье. Применительно к одномерной задаче уравнение имеет вид

где T – температура, t –время, x – координата͵ – коэффициент температуропроводности, l - коэффициент теплопроводности, c p - теплоёмкость материала при постоянном давлении, r - плотность материала.

Уравнение (3.14) – уравнение параболического типа. Решению этого уравнения при начальных и граничных условиях, определяемых притоком тепла к облучаемой поверхности применительно к условиям реальных пожаров, посвящён ряд исследований .

Экспериментальные данные по распределœению температуры получены на специальных тепловых установках с помощью датчиков, установленных в различных точках тела конструкции.

В качестве примера на рис.12 показано распределœение температуры при облучении тепловым потоком конструкции типа вертикальной стенки.

Рис.12. Распределœение температуры в телœе конструкции при облучении

тепловым потоком

Видно, что максимальная температура имеет место на лицевой поверхности облучаемой конструкции.

Как отмечалось ранее, при определœении величины J min под температурой T п в соотношении (3.13) подразумевают максимально допустимую температуру облучаемой поверхности, при превышении которой возможно возгорание конструкции. Критерием оценки T п и J min для дерева, картона, торфа, хлопка принято считать появление искр на обогреваемой поверхности. Значения T п и J min для легковоспламеняющихся и горючих жидкостей находятся по температуре самовоспламенения.

В приближенных расчетах при облучении сосновой древесины, фанеры, бумаги, плит ДВП, ДСП, хлопка, резины, бензина, керосина, мазута͵ нефти допускается принимать T п =513K .

Значения J min для твердых материалов в зависимости от продолжительности пожара, ᴛ.ᴇ. продолжительности облучения, приведены в табл.13, для легковоспламеняющихся и горючих жидкостей – в табл.14.

Пространство, в котором развивается пожар, можно условно разделить на три зоны:

    зону горения;

    зону теплового воздействия;

    зону задымления.

Зона горения – та часть пространства, в которой протекают процессы термического разложения или испарения горючих веществ и материалов (твердых, жидких, газов, паров) и сгорания образовавшихся продуктов. Данная зона ограничивается размером языка пламени, но в некоторых случаях может ограничиваться ограждениями здания (сооружения) стенками технологических установок, аппаратов.

Горение может быть пламенным (гомогенным) и беспламенным (гетерогенным). При пламенном горении границами зоны горения являются поверхность горящего материала и тонкий светящийся слой пламени (зона реакции окисления). При беспламенном горении (войлок, торф, кокс) зона горения представляет собой горящий объем твердых веществ, ограниченный не горящим веществом.

Рис. 2. Зоны пожара.

1 – зона горения; 2 – зона теплового воздействия; 3 – зона задымления; 4 – горючее вещество.

Зона горения характеризуется геометрическими и физическими параметрами: площадью, объемом, высотой, горючей загрузкой, скоростью выгорания веществ (линейная, массовая, объемная) и др.

Тепло, выделяющееся при горении, является основной причиной развития пожара. Оно вызывает нагрев окружающих зону горения горючих и негорючих веществ и материалов. Горючие материалы подготавливаются к горению и затем воспламеняются, а негорючие материалы разлагаются, плавятся, строительные конструкции деформируются и теряют прочность.

Выделение тепла происходит не во всем объеме зоны горения, а только в светящемся ее слое, где происходит химическая реакция. Выделившееся тепло воспринимается продуктами горения (дымом), в результате чего они нагреваются до температуры горения.

Зона теплового воздействия – часть, примыкающая к зоне горения. В этой части происходит процесс теплообмена между поверхностью пламени и окружающими строительными конструкциями, материалами. Передача тепла осуществляется конвекцией, излучением, теплопроводностью. Границы зоны проходят там, где тепловое воздействие приводит к заметному изменению состояния материалов, конструкций и создает невозможные условия для пребывания людей без средств тепловой защиты.

Проекция зоны теплового воздействия на поверхность земли или пола помещения называется площадью теплового воздействия. При пожарах в зданиях эта площадь состоит из двух участков: внутри здания и вне его. На внутреннем участке передача тепла осуществляется преимущественно конвекцией, а на внешнем - излучением от пламени в окнах и других проемах.

Размеры зоны теплового воздействия зависят от удельной теплоты пожара, размеров и температуры зоны горения и др.

Зона задымления - пространство, которое заполняется продуктами сгорания (дымовыми газами) в концентрациях, создающих угрозу для жизни и здоровья людей, затрудняющих действия пожарных подразделений при работе на пожарах.

Внешними границами зоны задымления считаются места, где плотность дыма составляет 0,0001 - 0,0006 кг/м 3 , видимость в пределах 6-12 м, концентрация кислорода в дыме не менее 16% и токсичность газов не представляет опасности для людей, находящихся без средств индивидуальной защиты органов дыхания.

Нужно всегда помнить, что задымление на любом пожаре всегда представляет наибольшую опасность для жизни людей. Так, например объемная доля оксида углерода в дыме в количестве 0,05% опасна для жизни людей.

В некоторых случаях дымовые газы содержат сернистый газ, синильную кислоту, оксиды азота, галогенводороды и др., наличие которых даже в незначительных концентрациях приводят к смертельным исходам.

В 1972 году в Ленинграде в ломбарде на Владимирском проспекте произошел пожар, к моменту прибытия караула в помещении практически не было задымления и личный состав проводил разведку без средств защиты органов дыхания, но через некоторое время личный состав стал терять сознание, в бессознательном состоянии было эвакуировано 6 пожарных, которые были госпитализированы.

В процессе расследования было установлено, что произошло отравление личного состава токсичными продуктами, выделявшимися в процессе горения нафталина.

Анализ пожаров показывает, что подавляющее большинство людей погибает от отравления продуктами неполного сгорания, вдыхания воздуха с пониженной концентрацией кислорода (менее 16 %). При уменьшении объемной доли кислорода до 10 % человек теряет сознание, а при 6% у него появляются судороги, и если ему не оказать немедленную помощь, то через несколько минут наступает смерть.

При пожаре в гостинице "Россия" в Москве из 42 человек только 2 человека погибли в огне, остальные погибли от отравления продуктами сгорания.

В чем заключается коварство задымления помещений на пожаре, даже при незначительных размерах горения? Если человек находится непосредственно в зоне горения или теплового воздействия, то естественно он сразу ощущает приближающуюся опасность и принимает соответствующие меры для обеспечения своей безопасности. При проявлении задымления очень часто люди, находящиеся в помещениях (а это наиболее характерно для зданий повышенной этажности) в верхнерасположенных этажах, не придают этому серьезного значения, а между тем по лестничной клетке образуется, так называемая, дымовая пробка, которая препятствует выходу людей из верхней зоны. Попытки людей пробиться через дым без индивидуальных средств защиты органов дыхания, как правило, заканчиваются трагически.

Так в 1997 году в Санкт-Петербурге, при тушении пожара на 3 этаже жилого дома на лестничной площадке 7 этажа были обнаружены трое погибших жильцов 5 этажа, которые, как показало расследование, пытались спастись от задымления в своей квартире, у знакомых, проживавших на 8 этаже.

Практически установить границы зон при пожаре не представляется возможным, т.к. происходит их непрерывное изменение, и можно говорить лишь об условном их расположении.

В процессе развития пожара различают три стадии: начальную, основную (развитую) и конечную. Эти стадии существуют для всех пожаров не зависимо от их видов.

Начальной стадии соответствует развитие пожара от источника зажигания до момента, когда помещение будет полностью охвачено пламенем. На этой стадии происходит нарастание температуры в помещении и снижение плотности газов в нем. Эта стадия продолжается 5 – 40 мин, а иногда и несколько часов. Она не оказывает, как правило, влияния на огнестойкость строительных конструкций, поскольку температуры пока сравнительно невелики. Количество удаляемых газов через проемы больше, чем количество поступающего воздуха. Вот почему линейная скорость в закрытых помещениях принимается с коэффициентом 0,5.

Основной стадии развития пожара в помещении соответствует повышение среднеобъемной температуры до максимума. На этой стадии сгорает 80-90% объемной массы горючих веществ и материалов. При этом расход удаляемых газов из помещения приблизительно равен притоку поступающего воздуха и продуктов пиролиза.

На конечной стадии пожара завершается процесс горения и постепенно снижается температура. Количество уходящих газов становится меньше, чем количество поступающего воздуха и продуктов горения.

Вывод по 2 вопросу:

При оценке обстановки на пожаре РТП должен учесть опасные факторы, которые угрожают личному составу при нахождении в:

Зоне теплового воздействия;

Зоне задымления.

Преподаватель отвечает на вопросы обучаемых.

«Тепловое загрязнение» - Сброс тепловых отходов в окружающую среду, в результате чего происходит техногенное изменение температурного режима компонентов геосфер: Тепловое загрязнение водоемов Тепловое загрязнение атмосферы Тепловое загрязнение верхних слоев литосферы. Последствия вибрации: Изменение рельефа поверхности Снижение механической прочности пород Уплотнение пород Оползни и обвалы Проседание поверхности, образование полостей Разрушение фундаментов зданий и инженерных сооружений, коммуникаций Физиологическое действие: нарушение сердечной деятельности, расстройство нервной системы, спазмы сосудов, уменьшение подвижности суставов; при явлении резонанса – механическое повреждение органов вплоть до разрыва Беспокоящее и отпугивающее воздействие на животных.

«Тепловая машина» - Развитие энергетики является одной из важнейших предпосылок научно-технического прогресса. Шотландский инженер, механик и изобретатель, интересовался паром и конденсацией воды. Первый паровоз был сконструирован в 1803 г. английским изобретателем Ричардом Тревитиком. Машина Уатта. Реактивный двигатель.

«Тепловые двигатели КПД тепловых двигателей» - Модель теплового двигателя. Открой листок самоконтроля на рабочем столе. Потребляет часть полученного количества теплоты Q2. Реактивный двигатель. T1 – температура нагревания Т2 – температура холодильника. Тепловые двигатели. Воспитать чувство коллективизма при работе в группах. Воздушный транспорт.

«Тепловые пояса Земли» - А условное изображение поверхности Земли на плоскости называют … . 3. Половина земного шара. Леса. Северная Америка. Раз – подняться, потянуться. Отгадайте кроссворд. Два – согнуться, разогнуться. Почему Солнце неодинаково «любит» Землю? 6. Условная линия, идущая по поверхности Земли от одного полюса к другому.

«Тепловые явления» - Цели и задачи обучения физике. Ожидаемые результаты. Формы организации учебной деятельности. Репродуктивный Наглядно-иллюстративный Объяснительно-иллюстративный Частично-поисковый. Учебно- методический комплекс. Методическая разработка раздела «Тепловые явления» 8 класс. Образовательные технологии. Методы познания.

«Тепловые машины» - Домашнее задание. «Младший брат» - паровоз. Первый паровой автомобиль. Первые тепловые двигатели. Решающая роль. Какой вариант покупки экономически будет более выгодным? Разрушение озонового слоя при полетах самолетов и запусках ракет. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q, то.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Практический журнал для бухгалтеров о расчете заработной платы