Практический журнал для бухгалтеров о расчете заработной платы

ЛЕКЦИЯ

по дисциплине "Прогнозирование опасных факторов пожара"

Тема №3. «ГАЗООБМЕН ПОМЕЩЕНИИ И ТЕПЛОФИЗИЧЕСКИЕ ФУНКЦИИ, НЕОБХОДИМЫЕ ДЛЯ ОПИСАНИЯ

ЗАМКНУТОГО ПОЖАРА»

План лекции:

Лекция 1,2. ДОПОЛНИТЕЛЬНЫЕ УРАВНЕНИЯ ИНТЕГРАЛЬНОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПОЖАРА ДЛЯ РАСЧЕТА РАСХОДОВ УХОДЯЩИХ ГАЗОВ И ПОСТУПАЮЩЕГО ЧЕРЕЗ ПРОЕМЫ ВОЗДУХА

1.1. Введение

1.2. Распределение давлений по высоте помещения

1.3 Плоскость равных давлений и режимы работы проема

1.4. Распределение перепадов давлений по высоте помещения

1.5. Формулы для расчета расхода газа, выбрасываемого через прямоугольный проем

1.6. Формулы для расчета расхода воздуха, поступающего через прямоугольный проем

1.7. Влияние ветра на газообмен

Лекция 3,4. УРАВНЕНИЯ ИНТЕГРАЛЬНОЙ МОДЕЛИ ПОЖАРА ДЛЯ РАСЧЕТА ТЕПЛОВОГО ПОТОКА В ОГРАЖДЕНИЯ И СКОРОСТИ ВЫГОРАНИЯ ГОРЮЧИХ МАТЕРИАЛОВ

2.1 Приближенная оценка величины теплового потока в ограждения

2.2 Эмпирические методы расчета теплового потока в ограждения

2.3 Полуэмпирические методы расчета теплового потока в ограждения

2.4 Методы расчета скорости выгорания горючих материалов и скорости тепловыделения

Цели лекции:

1. Учебные

В результате прослушивания материала слушатели должны знать:

Интегральные уравнения для расчета параметров газообмена

Уравнения интегральной модели для определения тепловых потоков к конструкциям помещения при пожаре

Влияний внешних условий на тепло и газообмен при пожаре

Уметь: прогнозировать обстановку на пожаре с учетом теплогазообмена

2. Развивающие: выделять самое главное, самостоятельность и гибкости мышления, развитие познавательного мышления.

Литература

1. Д.М. Рожков Прогнозирование опасных факторов пожара в помещении. – Иркутск 2007. С.89

2. Ю.А.Кошмаров, М.П. Башкирцев Термодинамика и теплопередача в пожарном деле. ВИПТШ МВД СССР, М., 1987 г.

3. Ю.А.Кошмаров Прогнозирование опасных факторов пожара в помещении. – Москва 2000. С.118

4. Ю.А.Кошмаров, В.В. Рубцов, Процессы нарастания опасных факторов пожара в производственных помещениях и расчет критической продолжительности пожара. МИПБ МВД России, М., 1999 г.

ДОПОЛНИТЕЛЬНЫЕ УРАВНЕНИЯ ИНТЕГРАЛЬНОЙ

МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПОЖАРА ДЛЯ РАСЧЕТА

РАСХОДОВ УХОДЯЩИХ ГАЗОВ И ПОСТУПАЮЩЕГО

ЧЕРЕЗ ПРОЕМЫ ВОЗДУХА

Введение

При пожаре происходит газообмен помещения с окружающей средой через проемы различного назначения (окна, двери, технологические отверстия и т.д.).

Побудителем движения газа через проемы является перепад давлений, т.е. разность между давлением внутри помещения и давлением в окружающей атмосфере. Перепад давлений обусловлен тем, что при пожаре плотность газовой среды внутри помещения существенно отличается от плотности наружного воздуха. Кроме того, необходимо учитывать влияние ветра на величину этого перепада. Дело в том, что наружное давление на наветренной стороне здания выше, чем наружное давление на подветренной стороне. Рассмотрим условия, когда ветер отсутствует.

ЛЕКЦИЯ

по дисциплине "Прогнозирование опасных факторов пожара"

Тема №5. «ПРОГНОЗИРОВАНИЕ ОПАСНЫХ ФАКТОРОВ ПОЖАРА ПРИ ТУШЕНИИ С ИСПОЛЬЗОВАНИЕМ

ИНТЕГРАЛЬНОГО МЕТОДА»

План лекции:

1. Введение;

2. Система уравнений, описывающая состояние среды при тушении пожара;

3. Дополнительные уравнения, используемые в интегральной модели пожара;

4. Выводы.

Цели лекции:

  1. Учебные

В результате прослушивания материала слушатели должны знать:

  • опасные факторы пожара, воздействующие на людей, на конструкции и оборудование
  • предельно допустимые значения ОФП
  • методы прогнозирования ОФП

Уметь: прогнозировать обстановку на пожаре.

  1. Развивающие:
  • выделять самое главное
  • самостоятельность и гибкости мышления
  • развитие познавательного мышления

Литература

  1. Ю.А.Кошмаров Прогнозирование опасных факторов пожара в помещении. – Москва 2000. С.118
  2. Моделирование пожаров и взрывов. (Под ред. Брушлинского Н.Н. и Корольченко А.Я.) - М.: Пожнаука, 2000, - 492 с.
  3. Лабораторный практикум «Прогнозирование опасных факторов пожара». Ю.А.Кошмаров, Ю.С.Зотов. 1997 г.

1. Введение

В современных условиях разработка экономически оптимальных и эффективных противопожарных мероприятий немыслима без научно обоснованного прогноза динамики опасных факторов пожара (ОФП).

Прогнозирование ОФП необходимо:

  • при разработке рекомендаций по обеспечению безопасной эвакуации людей при пожаре;
  • при создании и совершенствовании систем сигнализации и автоматических систем пожаротушения;
  • при разработке оперативных планов тушения (планировании действий боевых подразделений на пожаре);
  • при оценке фактических пределов огнестойкости;
  • и для многих других целей.

Современные методы прогнозирования ОФП не только позволяют заглядывать в «будущее», но и дают возможность снова «увидеть» то, что уже когда-то произошло. Другими словами, теория прогнозирования позволяет воспроизвести восстановить картину развития реально произодшего пожара, т.е. «увидеть» прошлое. Это необходимо, например, при криминалистической или пожарно-технической экспертизе пожара.

2. Система уравнений, описывающая состояние среды при тушении пожара

Основная система дифференциальных уравнений, описывающих процесс изменения состояния газовой среды, заполняющей помещение, при тушении пожара имеет вид:

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

В этих уравнениях используются те же обозначения, которые были даны в предыдущих лекциях. Кроме того, уравнения содержат следующие величины: G пр и G выт - массовые расходы, создаваемые приточно-вытяжной вентиляцией, кг∙с -1 ; G 0 B - массовый расход подачи газообразного огнетушащего вещества (OB ), кг∙с -1 ; Q О - тепло, поступающее от системы отопления, Вт; Q r - тепло, излучаемое через проемы, Вт; i г - энтальпия продуктов газификации горючего материала, Дж∙кг -1 .

Начальные условия для дифференциальных уравнений записываются следующим образом:

при τ = 0

(5.6)

где Т о - начальная температура в помещении; R а - газовая постоянная воздуха; р а - атмосферное давление на уровне половины высоты помещения.

3. Дополнительные уравнения, используемые в интегральной модели
пожара

Дополнительные уравнения, используемые в интегральной модели пожара, имеют следующий вид:

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

где α - коэффициент теплоотдачи; ε m - степень черноты задымленной среды; σ - постоянная Больцмана; F c - суммарная площадь проемов; b i - ширина i -г o проема; ξ, - коэффициент сопротивления проема; у * - координата плоскости равных давлений (ПРД), отсчитываемая от пола; y н i - координата нижнего края i -го проема; y Bi - координата верхнего края i -го проема; h - половина высоты помещения; F w - суммарная площадь поверхности ограждений; F Г - площадь горения; v Л - линейная скорость распространения пламени по ТГМ; ψ уд - удельная скорость выгорания на открытом воздухе; К - функция режима пожара (т.е. ПРВ или ПРН); Z i - формальный параметр, определяемый следующим образом:

(5.19)

Степень черноты задымленной среды рассчитывается по формуле:

(5.20)

где l = 3,6 λ - коэффициент пересчета оптического диапазона в диапазон инфракрасных волн.

Расходы приточно-вытяжной вентиляции G пр и G выт вычисляются по следующим формулам:

(5.21)

(5.2 2 )

где W ПР и W BblT - соответственно объемные производительности приточной и вытяжной систем. Расход огнетушащего вещества G 0 B полагается постоянным в интервале времени от момента включения системы пожаротушения до окончания запаса огнетушащих веществ и равным нулю вне этого интервала, а горючий материал расположен на прямоугольной площадке.

Дифференциальные уравнения (5.1) - (5.5) несколько отличаются от уравнений (1.34) - (1.38). Это обусловлено тем, что в рассматриваемой постановке задачи предполагается возможным принять следующие допущения:

V = const; n 1 =1; n 2 =1; n 3 =1; m =1

4. Выводы

Кроме того, в рассматриваемой здесь постановке задачи учитывается работа приточно-вытяжной вентиляции и подача в заданный момент времени газообразного огнетушащего вещества.

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ

СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

ВОРОНЕЖСКИЙ ИНСТИТУТ ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ

КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНЖЕНЕРНОЙ ГРАФИКИ

Учебное издание

Специальность 280705.65 – «Пожарная безопасность»

Прогнозирование опасных факторов пожара в помещении

Д.В. Русских

ВОРОНЕЖ 2013

УДК 536.46+614.841

ББК 24.54+31.31+38.96

Издано по решению методического совета ФГБОУ ВПО Воронежский институт ГПС МЧС России

Рецензенты:

доцент кафедры уравнений в частных производных и теории вероятностей,

кандидат физико-математических наук, доцент А.С. Рябенко (ВГУ);

доцент кафедры физики,

кандидат физико-математических наук А.Б. Плаксицкий (ВИ ГПС МЧС России)

Р83 Русских Д.В.

Прогнозирование опасных факторов пожара в помещении. Практикум с вариантами заданий для выполнения курсовой работы по дисциплине

«Прогнозирование опасных факторов пожара» для курсантов и студентов очной формы обучения и слушателей факультета заочного обучения.

Специальность 280705.65 – «Пожарная безопасность». Д.В. Русских, С.А.

Донец [Воронежский институт ГПС МЧС России]. – Воронеж, 2013. – 83 с.

В практикуме приведены краткие теоретические сведения, примеры решения типовых задач, в том числе с применением персонального компьютера, варианты заданий и методические указания для выполнения курсовой (контрольной) работы.

Практикум предназначен для курсантов и студентов очной формы обучения и слушателей факультета заочного обучения по специальности

280705.65 – «Пожарная безопасность».

© Русских Д.В., Донец С.А., 2013

© ФГБОУ ВПО Воронежский Институт ГПС МЧС России, 2013

Введение

1.1 Основные понятия

1.2 Описание интегральной математической модели пожара в помещении

1.3 Описание дифференциальной математической модели пожара в помещении

1.4 Описание зонной математической модели пожара в помещении

2. Расчет динамики опасных факторов пожара в помещении

2.1 Исходные данные

2.2 Использование интегральной математической модели

2.3 Определение критической продолжительности пожара и времени блокирования путей эвакуации

2.6 Использование зонной математической модели

3. Методические указания для выполнения курсовой (контрольной) работы

3.1 Цели и задачи

3.2 Выбор темы курсовой работы и индивидуального варианта задания

3.4.1 Исходные данные

3.4.2 Описание интегральной и зонной математических моделей развития пожара в помещении

3.4.3 Расчет динамики опасных факторов пожара в помещении с использованием интегральной математической модели

3.4.4 Определение критической продолжительности пожара и времени блокирования эвакуационных путей

3.4.5 Прогнозирование обстановки на пожаре к моменту прибытия первых подразделений на тушение

3.4.6 Расчет огнестойкости ограждающих строительных конструкций с учетом параметров реального пожара

3.4.7 Расчет динамики опасных факторов пожара в помещении с использованием зонной математической модели

3.5 Требования к оформлению курсовой (контрольной) работы

Литература

Приложение А

Приложение Б

Введение

Настоящий практикум предназначен для курсантов и студентов второго курса, а также слушателей третьего курса факультета заочного обучения специальности 280705.65 «Пожарная безопасность» ФГБОУ ВПО Воронежский институт ГПС МЧС России. Написан в соответствии с рабочей программой по курсу «Прогнозирование опасных факторов пожара»,

разработанной согласно требованиям Федерального Государственного образовательного стандарта высшего профессионального образования.

В практикуме содержится теоретический материал и подробно разобранные практические задачи для подготовки и проведения практических занятий по двум темам: интегральная математическая модель пожара в помещении, зонная математическая модель пожара в помещении.

Приведены варианты заданий и методические указания для выполнения курсовой работы курсантами и студентами второго курса и контрольной работы слушателями третьего курса факультета заочного обучения.

Практикум написан на высоком инженерном уровне, доступным для восприятия языком. Может быть использован обучающимися для самостоятельного изучения соответствующего материала, выполнения курсовой и контрольной работы, а также для подготовки к зачету по дисциплине «Прогнозирование опасных факторов пожара» в четвертом семестре у курсантов и студентов очной формы обучения, во время итоговой сессии на третьем курсе у слушателей факультета заочного обучения.

Кроме того, практикум должен помочь обучающимся в тех случаях,

когда они по каким-либо причинам отсутствовали на занятиях или не успели что-то записать, а также в тех случаях, когда им не хватило времени для восприятия материала во время занятия.

1. Методы прогнозирования опасных факторов пожара в помещении

1.1. Основные понятия

Опасным фактором пожара называется фактор, воздействие которого приводит к травме, отравлению или гибели человека, а также к материальному ущербу.

В соответствии со статьей 9 федерального закона № 123-ФЗ «Технический регламент о требованиях пожарной безопасности» от 22 июля 2008 г. к опасным факторам пожара, воздействующим на людей и имущество, относятся:

1) пламя и искры;

2) тепловой поток;

3) повышенная температура окружающей среды;

4) повышенная концентрация токсичных продуктов горения и термического разложения;

5) пониженная концентрация кислорода;

6) снижение видимости в дыму.

К сопутствующим проявлениям опасных факторов пожара относятся:

1) осколки, части разрушившихся зданий, сооружений, строений, транспортных средств, технологических установок, оборудования, агрегатов, изделий и иного имущества;

2) радиоактивные и токсичные вещества и материалы, попавшие в окружающую среду из разрушенных технологических установок, оборудования, агрегатов, изделий и иного имущества;

3) вынос высокого напряжения на токопроводящие части технологических установок, оборудования, агрегатов, изделий и иного имущества;

4) опасные факторы взрыва, происшедшего вследствие пожара;

5) воздействие огнетушащих веществ.

В современных условиях разработка экономически оптимальных и эффективных противопожарных мероприятий немыслима без научно обоснованного прогноза динамики опасных факторов пожара (ОФП).

Прогнозирование ОФП необходимо:

2) при создании и совершенствовании систем сигнализации и автоматических систем пожаротушения;

3) при разработке оперативных планов тушения (планировании действий боевых подразделений на пожаре);

4) при оценке фактических пределов огнестойкости;

5) для многих других целей.

С научных позиций опасные факторы пожара являются физическими понятиями и, следовательно, каждый из них представлен в количественном отношении одной или несколькими физическими величинами. С этих позиций и рассмотрим вышеперечисленные ОФП.

Первый опасный фактор – пламя и искры. Пламя - это видимая часть пространства (пламенная зона), внутри которой протекает процесс окисления

(горения) и происходит тепловыделение, а также генерируются токсичные газообразные продукты, и поглощается забираемый из окружающего пространства кислород. Кроме того, в границах этой части пространства

(зоны) образуется специфическая дисперсная среда, особые оптические свойства которой обусловлены процессами рассеяния энергии световых волн вследствие их многократного отражения от мельчайших твердых (и жидких)

частиц. Этот процесс образования дисперсной среды, ухудшающей видимость, принято называть процессом дымообразования.

По отношению к объему помещения, заполненному газом, пламенную зону можно рассматривать, с одной стороны, как «источник» тепловой энергии и токсичных продуктов горения, а также мельчайших твердых

(жидких) частиц, из-за которых ухудшается видимость. С другой стороны,

как «сток», в который уходит кислород из помещения.

В связи с вышесказанным содержание понятия «пламя» представлено в количественном отношении следующими величинами:

1) характерными размерами пламенной зоны (очага горения), например площадью горения (площадью пожара) F r , м2 ;

2) количеством сгорающего (окисляемого) за единицу времени горючего материала (ГМ) (скоростью выгорания) , кг·с-1 ;

3) мощностью тепловыделения Q пож , Вт; Q пож = Q Р Н , где Q Р Н - теплота сгорания, Дж·кг-1 ;

4) количеством генерируемых за единицу времени в пламенной зоне токсичных газов L i , кг·с-1 , где L i - количество i -го токсичного газа,

образующегося при сгорании единицы массы ГМ;

5) количеством кислорода, потребляемого в зоне горения L 1 , кг·с-1 , где

L 1 - количество кислорода, необходимое для сгорания (окисления) единицы массы ГМ;

6) оптическим количеством дыма, образующегося в очаге горения D ,

Непер·м2 ·с-1 , где D - дымообразующая способность горючего материала,

Непер·м2 ·кг-1 .

Второй опасный фактор пожара - тепловой поток.

Третий опасный фактор - повышенная температура окружающей среды. Температура среды, заполняющей помещение, является параметром состояния, он обозначается Т, если используется размерность Кельвин или t,

если используется размерность градусы Цельсия.

Четвертый опасный фактор - повышенная концентрация токсичных продуктов горения и термического разложения. Этот фактор количественно характеризуется парциальной плотностью (или концентрацией) каждого токсичного газа. Парциальная плотность компонентов газовой среды в помещении является параметром состояния. Обозначается ρ, размерность -

кг·м-3 . Сумма парциальных плотностей всех компонентов газовой среды равна

плотности газа. Концентрацией токсичного i -го газа обычно называют отношение парциальной плотности этого газа i к плотности газа, т. е.

i i .

Если умножить отношение i на 100 процентов, то получим значение

концентрации продукта в процентах.

Пятый опасный фактор – пониженная концентрация кислорода в помещении. Этот фактор количественно характеризуется значением парциальной плотности кислорода 1 или отношением ее к плотности газовой среды в помещении, т. е.

x 1 1 .

Шестой опасный фактор пожара – снижение видимости в дыму. Этот фактор количественно представляют параметром, называемым оптической концентрацией дыма. Этот параметр обозначают буквой µ, его размерность -

Непер·м-1 . (Иногда параметр µ называют натуральным показателем ослабления.) Расстояние видимости в дыму l вид и оптическая концентрация дыма связаны между собой простым соотношением

Вышеприведенные величины: температура среды, парциальные плотности (концентрации) токсичных газов и кислорода, оптическая плотность дыма - являются параметрами состояния среды, заполняющей помещение при

пожаре. Они характеризуют свойства газовой среды в помещении. Начиная с возникновения пожара, в процессе его развития эти параметры состояния непрерывно изменяются во времени, т.е.

T f 1 , 1 f 2 , f 3 , O 2 f 4 .

Совокупность этих зависимостей составляет суть динамики ОФП.

При рассмотрении воздействия ОФП на людей используются так называемые предельно допустимые значения (ПДЗ) параметров состояния среды в зоне пребывания людей (рабочей зоне). Предельно допустимые значения ОФП получены в результате обширных медико-биологических исследований, в процессе которых установлен характер воздействия ОФП на людей в зависимости от значений их количественных характеристик.

Следует подчеркнуть, что в условиях пожара имеет место одновре-

менное воздействие на человека всех ОФП. Вследствие этого опасность многократно увеличивается. Предельно допустимые значения ОФП указаны в ГОСТ 12.1.004-91 и СП 11.13130.2009 (таблица 1.1).

Таблица 1.1. Предельно допустимые значения ОФП

ОФП, обозначение, размерность

Температура, t , °С

Парциальная плотность, кг·м-1 :

кислорода

оксида углерода

диоксида углерода

хлористого водорода

цианистого водорода

окислов азота

сероводорода

Оптическая плотность дыма, µ, Непер·м

2,38/l пдв *

Тепловой поток, q , Вт/м2

* l пдв - предельно допустимая дальность видимости, м.

ЛЕКЦИЯ

по дисциплине "Прогнозирование опасных факторов пожара"

Тема №1. «Исходные понятия и общие сведения о методах прогнозирования ОФП в помещениях»

План лекции:

1. Введение

2. Опасные факторы пожара. Предельно допустимые значения ОФП.

3. Современные научные методы прогнозирования ОФП.

Цели лекции:

1. Учебные

В результате прослушивания материала слушатели должны знать:

Опасные факторы пожара, воздействующие на людей, на конструкции и оборудование

Предельно допустимые значения ОФП

Методы прогнозирования ОФП

Уметь: прогнозировать обстановку на пожаре.

2. Развивающие:

Выделять самое главное

Самостоятельность и гибкости мышления

Развитие познавательного мышления

Литература

1. Ю.А.Кошмаров Прогнозирование опасных факторов пожара в помещении. – Москва 2000. С.118

2. Лекция на тему: Состав и свойства продуктов горения. Лекарственные средства для медицинской защиты от токсичных продуктов горения. – Иркутск.

3. Лабораторный практикум «Прогнозирование опасных факторов пожара». Ю.А.Кошмаров, Ю.С.Зотов. 1997 г.

Понятие модели является центральным в современной теории познания. Рассмотрим его несколько подробнее.

В процессе познавательной деятельности человека постепенно вырабатывается система представлений о тех или иных свойствах изучаемого объекта и их взаимосвязях. Эта система представлений закрепляется, фиксируется в виде описания объекта на обычном языке, в виде рисунка, схемы, графика, формулы, в виде макетов, механизмов, технических устройств. Все это обобщается в едином понятии "модель", а исследование объектов познания на их моделях называют моделированием.

Таким образом, модель- это специально создаваемый объект, на котором воспроизводятся вполне определенные характеристики реального исследуемого объекта с целью его изучения. Моделирование является важнейшим инструментом научной абстракции, позволяющим выделить, обосновать характеристики изучаемого реального объекта: свойства, взаимосвязи, структурные и функциональные параметры и др.

Метод моделирования как метод научного познания имеет историю, исчисляемую тысячелетиями. Его нельзя считать недавно открытым методом научного исследования. Однако только в середине XX в. само моделирование стало предметом как философских, так и специальных исследований. Объясняется это, в частности, тем, что метод моделирования переживает сейчас подлинную революцию, связанную с развитием, во-первых, теории подобия и, во-вторых, кибернетики и электронной вычислительной техники.

Именно эта революция и позволила специалистам в последние десятилетия приступить к созданию и активному использованию, прежде всего, в научных исследованиях, а затем и на практике различных моделей возникновения, развития и ликвидации пожаров. Поясним это утверждение только на двух примерах. Первый пример относится к так называемому материальному (физическому) моделированию, о котором подробнее будет сказано ниже. В первой половине XX в., когда начиналось интенсивное развитие авиастроения и кораблестроения, строительство крупных гидротехнических сооружений, связанное с этими процессами развитие металлургии и других отраслей промышленности, сложные инженерные расчеты приходилось проверять на моделях самолетов, кораблей, плотин и др. В результате возникла острая необходимость в развитии специфической теории физического моделирования. Так сформировалась теория подобия, зачатки которой тоже можно обнаружить задолго до нашего века.



Теория подобия - это учение об условиях подобия физических явлений, процессов и систем, которое опирается на учение о размерностях физических величин и положено в основу экспериментов с физическими моделями.

Физические явления, процессы и системы считаются подобными, если в сходственных точках пространства в сходственные моменты времени величины, характеризующие состояние системы, пропорциональны соответствующим величинам другой системы. Такими величинами являются так называемые критерии подобия - безразмерные числовые характеристики, составленные из размерных физических параметров, определяющих исследуемые физические явления. Равенство однотипных критериев подобия для двух физических процессов и систем - необходимое и достаточное условие их физического подобия. Предметом теории подобия является установление критериев подобия для различных физических явлений.

В интересующей нас области автором теории физического моделирования процессов теплопередачи и тепловых устройств явился наш соотечественник М.В. Кирпичев (1879-1955 гг.). Теория подобия в целом и его работы в частности послужили импульсом в использовании методов физического моделирования при изучении закономерностей динамики пожаров.

Итак, модель - это объект любой природы, который заменяет реальный исследуемый объект так, что его изучение дает новую информацию о реальном объекте. Естественно, модели выбираются таким образом, чтобы они были проще и удобнее для исследования, чем интересующие нас объекты (тем более, что существуют и такие объекты, которые вообще нельзя активно исследовать).

В зависимости от средств, с помощью которых реализованы модели, различают, прежде всего, материальное (предметное) и идеальное (абстрактное) моделирование.

Материальным называется моделирование, в котором исследование ведется на основе модели, воспроизводящей основные геометрические, физические, динамические и функциональные характеристики изучаемого объекта. Частным случаем материального моделирования является физическое моделирование, при котором моделируемый объект и модель имеют одну и ту же физическую природу.

Идеальные модели связаны с использованием каких-либо символических схем (графических, логических, математических и др.).

Математические модели тоже имеют свою классификацию (и не одну). Нам удобно подразделить математические модели, во-первых, на аналитические и имитационные. В случае аналитических моделей исследуемый объект и его свойства описывают отношениями-функциями в явной или неявной форме (дифференциальными или интегральными уравнениями; операторами) таким образом, что становится возможным непосредственно с помощью соответствующего математического аппарата сделать необходимые выводы об изучаемом объекте и его свойствах.

Одной из первых и простейших аналитических моделей пожара была модель, отражающая зависимость температуры "стандартного" пожара от времени, используемая при испытании строительных конструкций на огнестойкость. Ее обычно называют стандартной кривой "температура-время" и задают либо в виде таблицы, либо в виде эмпирической формулы. В отечественной литературе ее часто записывают в виде:

T= Т 0 + 345lg(8τ + 1) ,

где τ - время, мин; Т 0 - начальная температура, °С; Т- текущая температура пожара, °С.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Практический журнал для бухгалтеров о расчете заработной платы