Практический журнал для бухгалтеров о расчете заработной платы

Тепловизор – оптико-электронный измерительный прибор, предназначенный для бесконтактного наблюдения и фиксации распределения температуры исследуемой поверхности. Тепловизоры в настоящее время являются полноценным компонентом набора инструментов технических инженеров – контроль температуры применяется во всех отраслях промышленности и строительства.

Пирометр - прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света. Пирометры применяют для дистанционного определения температуры объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства (сталелитейная промышленность, нефтеперерабатывающая отрасль). Пирометры могут выступать в роли средства безопасного дистанционного измерения температур раскаленных объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур. Их можно применять в качестве теплолокаторов (усовершенствованные модели), для определения областей критических температур в различных производственных сферах.


48.Технические мероприятия профилактики вредного влияния теплового излучения и высоких температур .

К числу мероприятий, способных ослабить вредное действие тепл. излучения, относятся: механизация работ, напр. на то, чтобы работники меньше подвергались тепловому облучению; устройство у тепловыделяющих произв. источников цепных или водяных завес; применение экранов из материалов, облад. малой теплопроводностью; осуществление аэрации горячих цехов; устройство специальных комнат отдыха, а также душей, снабжение работников подсол. газир. водой (3 г соли на 1 л воды); применение такой организации труда, которая допускает чередование лиц, работающих в сильно облучаемых местах; обязат. применение спец. очков для защиты от ИК излучения и особых стекол для предотвращения воздействия ультрафиолетовых лучей.



К группе санитарно-технических мероприятий относится применение коллект. средств защиты: локализация тепловыделений, теплоизоляция горячих поверхностей, экранирование источников либо раб. мест; возд. душирование, радиационное охлаждение, мелкодисперсное распыление воды; общеобменная вентиляция или кондиционирование воздуха. Общеобменной вентиляции при этом отводится ограниченная роль – доведение условий труда до допустимых с мин. эксплуат. затратами. Уменьшению поступления теплоты в цех способствуют мероприятия, обеспеч. герметичность оборудования. Плотно подогнанные дверцы, заслонки, блокировка закрытия технолог. отверстий с работой оборудования – все это значительно снижает выделение теплоты от открытых источников.

49. Средства коллективной защиты от вредного влияния теплового излучения и высоких температур .

Снижение уровня воздействия на работающих вредных веществ или его полное устранение достигается путем проведения технолог., санитарно - технических, лечебно - профилактич. мероприятий и применением СИЗ.

К технологическим мероприятиям относятся такие как внедрение непрер. технологий, автоматизация и механизация произв. процессов, дистанц. управление, герметизация оборудования, замена опасных технолог. процессов и операций менее опасными и безопасными.

Санитарно-технические мероприятия :

оборудование рабочих мест местной вытяжной вентиляцией или переносными местными отсосами, укрытие оборудования сплошными пыленепроницаемыми кожухами с эффективной аспирацией воздуха и др.

Когда технолог., санитарно-технические меры не полностью исключают наличие вредных веществ в воздушной среде, отсутствуют методы и приборы для их контроля, проводятся лечебно-профилактические мероприятия:

организация и проведение предварительных и периодических медицинских осмотров, дыхательной гимнастики, щелочных ингаляций, обеспечение лечебно-профил. питанием и молоком и др.

Особое внимание в этих случаях должно уделяться применению СИЗ, прежде всего для защиты органов дыхания (фильтрующие и изолирующие противогазы, респираторы, защитные очки, спец. одежда).

Все физические тела, температура которых больше абсолютного нуля, испускают тепловые лучи.Тепловое излучение – электромагнитное излучение, испускаемое веществомза счет его внутренней энергии .

Интенсивность теплового излучения резко убывает с уменьшением температуры тел. Большинство твердых и жидких тел имеют сплошной спектр излучения, т.е. излучают волны всех длинλ.

Видимое человеком излучение (свет): λ = 0,40-0,75 мкм.

Инфракрасный (невидимый свет): λ = 0,75-400 мкм. Далее радиоволновой диапазон.

Средства измерения, определяющие температуру тел по их тепловому излучению, называютпирометрами излучения . Пирометры используются для измерения температуры в диапазоне 300-6000 о С. Для измерения температур больше 3000 о С пирометры являются практически единственными СИ, т.к. они бесконтактны. Теоретически верхний предел измерения пирометров неограничен. В пирометрах используется в основном видимый свет и инфракрасный диапазон.

Измерение температуры тел по их тепловому излучению основывается на закономерностях, полученных дляабсолютно черного тела . Если на внешнюю поверхность тела падает поток лучистой энергии Ф, то он частично поглощается Фп, отражается Фот и пропускается Фпр. Соотношение между этими потоками зависит от свойств тела и, в частности, от состояния его поверхности (степени шероховатости, цвета, температуры). Если тело поглощает весь падающий на него лучистый поток, токоэффициент поглощения его и такое тело называютабсолютно черным .

Реальные тела не являются абсолютно черными, и лишь некоторые из них по оптическим свойствам близки к ним, например, нефтяная сажа, платиновая чернь, черный бархат в области видимого света имеютα, мало отличающийся от 1.

Внешняя поверхность тел не только поглощает, но и испускает собственное излучение, зависящее от температуры.

В соответствии с законом Кирхгофаизлучательная способность тел пропорциональна их коэффициентам поглощения. Так как коэффициент поглощения абсолютно черного тела α абс.ч.т. =1, то оно обладает максимальной излучательной способностью.

В пирометрии излучения в качестве величин, характеризующих тепловое излучение тел, применяют энергетическую светимость (излучательность) и энергетическую яркость (лучистость). При этом следует различать полную и спектральную светимость и яркость.

Под полнойэнергетической светимостью понимают полную (интегральную)поверхностную плотность излучаемой мощности .

Энергетической яркостью тела в данном направлении называетсямощность излучения в единичный телесный угол с единицы площади проекции поверхности тела на плоскость, перпендикулярную данному направлению. Энергетическая яркость является основной величиной, непосредственно воспринимаемой человеческим глазом, а также всеми пирометрами, основанными на измерении температуры по тепловому излучению.


Все реальные тела по степени поглощения ими лучистой энергии отличаются от черного тела и имеют коэффициент поглощения меньше единицы. Излучательная способность реальных тел также отличается от лучеиспускательной способности черного тела и может быть охарактеризована коэффициентом излучения полнымε и спектральнымε λ .

Реальные тела при одинаковой температуре имеют различную излучательную способность , оценку которой производят по отношению к излучательной способности абсолютно черного тела (значок * относится к абсолютно черному телу)

гдеε λ –коэффициент спектрального излучения (степень черноты монохроматического излучения);

ε– коэффициент полного излучения (степень черноты полного излучения);

Е λ , Е λ * - спектральная энергетическая светимость;

В λ , В λ * - спектральная энергетическая яркость (воспринимается глазом);

Е, Е * - полная энергетическая светимость.

ε λ является функцией длины волныλ и температуры Т. Тело, у которогоε λ не зависит от температуры и λ, называют серым.

Зависимость между спектральной энергетической светимостью абсолютно черного тела Е λ * , его температурой Т и длиной волныλустанавливаетсязаконом Планка (см. рисунок 1.17)

где с 1 , с 2 – константы.

Для выбранной λ с увеличением температуры резко возрастает Е λ * или В λ * , так как

В λ * =k λ ∙ Е λ * . (1.32)

Указанный факт устанавливает возможность измерения температуры тела по его спектральной яркости с высокой чувствительностью.

Из графика (рисунок 1.17) видно, чтоλ max уменьшается с увеличением температуры. По мере уменьшения температуры черного тела максимум распределения энергии его излучения смещается в сторону длинноволновой области спектра.

Рисунок 1.17 – Семейство кривых Е λ * , построенных по закону Планка

Это и явилось основанием использовать для измерения яркостной температуры тел инфракрасную область спектра.

Для реальных тел, имеющих каждый свой ε λ

В λ = ε λ ∙ В λ * . (1.33)

Еслиреальные тела имеют одну и ту же температуру , то из-за разностиε λ измеренныезначения В λ будут различаться , что не позволяет иметь единую шкалу прибора, отградуированную в значениях истинной температуры различных объектов. В связи с этим шкалу пирометра приходится градуировать по излучению абсолютно черного тела.

Так как излучательная способность реальных тел меньше, чем черных, то показания пирометра будут соответствовать не действительной температуре реального тела, а дают условную температуру, в данном случае так называемую яркостную температуру.

Яркостной температурой реального тела называют такую температуру абсолютно черного тела, при которой его спектральная яркость В * (λ , Тя) равна спектральной яркости реального тела В (λ , Т) при его действительной температуре Т.

Используя (1.31), (1.32), (1.33), получим

Видно, что яркостная температура всегда меньше действительной температуры, так как ε λ < 1.

Приборы, предназначенные для измерения яркостной температуры в видимой части спектра, обычно называютоптическими и фотоэлектрическими пирометрами.

Как видно из рисунка 1.17, с повышением температуры максимум кривой распределения энергии излучения по спектру смещается в сторону коротких волн. Длина волныλ max , соответствующая максимуму кривой распределения энергии в спектре излучения черного тела, связана с абсолютной температурой Т соотношением

гдеb – постоянная, равная 2896 мкм К.

Соотношение (1.35) носит название закона смещения Вина. Пунктирная линия (см. рисунок 1.17), проходящая через максимумы всех кривых, соответствует закону смещения Вина.

В видимой части спектра смещениеλ max и, следовательно, перераспределение энергии, вызываемое изменением температуры тела, приводит к изменению его цвета. Это послужило основанием существующиеметоды измерения температур тел , основанные на изменении с температурой распределения энергии внутри данного участка спектра излучения, назватьцветовыми методами . Условная температура тела, измеренная этими методами, называется цветовой температурой.

Наибольшее распространение из существующих получил метод измерения цветовой температуры в видимой части спектра по отношению энергетических яркостей в двух спектральных интервалах.

Цветовой температурой (Тц) называется такая температура абсолютно черного тела, при которой отношение его спектральных энергетических яркостей при длинах волнλ 1 иλ 2 равно отношению спектральных яркостей реального тела при тех же длинах волн и его действительной температуры Т.

Известно, что . Учитывая (1.31), (1.32), (1.33), получим

Практически серыми считают реальные тела: керамика, оксиды металлов, огнеупорные материалы, гранит и др. Преимущества цветового метода для них очевидны, так как яркостная температура всегда, в отличие от цветовой, ниже действительной.

Приборы, предназначенные для измерения цветовой температуры по отношению спектральных энергетических яркостей, принято называтьпирометрами спектрального отношения или цветовыми пирометрами .

1. За счет каких процессов образуется тепло в организме человека? Каким путем организм теряет большую часть тепла?

Образование тепла в организме человека происходит за счет окислительных реакций и сокращения мышц, а также поглощения тепла получаемого извне от оборудования, нагретых веществ, ламп накаливания и др.

Большую часть тепла организм теряет за счёт теплового излучения (до 60%).

2. Какими способами происходит отдача тепла организмом человека?

Отдача тепла организмом в окружающую среду осуществляется путем конвекции в результате нагревания воздуха, омывающего поверхность тела, (примерно 30 %), испарения влаги (пота) с поверхности кожи (в среднем 20 – 29 %), теплового излучения на окружающие предметы, имеющие более низкую чем кожа температуру поверхности (до 60 %).

3. От каких параметров зависит величина интенсивности теплового излучения на рабочем месте? Указать единицу измерения интенсивности.

Интенсивность теплового излучения Q (Вт/м2) на рабочем месте можно рассчитать по формуле: , где F – площадь излучающей поверхности источника, м2; T ° – температура излучающей поверхности, К; l – расстояние от излучающей поверхности до работающего, м. Единица измерения – Вт/м².

4. От какого параметра излучения зависит глубина его проникновения в живую ткань? Воздействие излучения на какие органы наиболее опасно?

Зависит от длины волны. Лучи длинноволнового диапазона ИК – излучения (от 3 мкм до 1 мм) задерживаются в поверхностных слоях кожи уже на глубине 0,1 – 0,2 мм. Лучи коротковолнового диапазона ИК – излучения (от 0,78 до 1,4 мкм) обладают способностью проникать в ткани организма на несколько сантиметров.

Клетки головного мозга, лёгкие, почки, мышцы.

5. Какой диапазон ИК-излучения при облучении вызывает более тяжелые последствия?

Лучи коротковолнового диапазона ИК – излучения (от 0,78 до 1,4 мкм) легко проникают через кожу и черепную коробку в мозговую ткань и могут воздействовать на клетки головного мозга, вызывая его тяжелые поражения.

6. Какое специфическое заболевание может вызвать нарушение терморегуляции? Каковы симптомы этого заболевания?

ИК-излучение может привести к специфическому заболеванию – тепловому удару , проявляющегося в головной боли, головокружении, учащении пульса, ускорении дыхания, падении сердечной деятельности, потере сознания и др.

7. Какое профессиональное заболевание может вызвать длительное тепловое облучение? Какой диапазон ИК-излучения при этом наиболее опасен?

При длительном облучении глаз у работников развивается профессиональное заболевание – катаракта (помутнение хрусталика). Лучи коротковолнового диапазона ИК – излучения (от 0,78 до 1,4 мкм) наиболее опасны.

8. Через величину какой характеристики оценивается действие теплового излучения на человека? Указать единицу ее измерения.

Действие теплового излучения на человека оценивается через величину, названную интенсивностью теплового облучения , Вт/м 2 .

9. От каких факторов зависит эффект воздействия теплового излучения?

Тепловой эффект воздействия облучения зависит от множества факторов:

1)температуры источника излучения, 2) интенсивности теплового излучения на рабочем месте, 3) спектра излучения, 4) площади излучающей поверхности, 5) расстояния между излучающей поверхностью и телом человека, 6) размера облучаемого участка тела, 7) длительности облучения, 8) одежды и т.п.

10. В каких случаях будет более тяжелым эффект воздействия теплового излучения?

Чем больше величина облучаемой поверхности, чем продолжительнее период облучения и чем ближе облучаемый участок организма к важным жизненным органам, тем тяжелее эффект воздействия.

11. Что такое терморегуляция? Какова функция данного механизма?

Регулирование теплообмена осуществляется путем изменения количества вырабатываемого в организме тепла и путем увеличения или уменьшения его передачи в окружающую среду за счет соответствующих реакций одного из основных механизмов приспособления – терморегуляции.

Терморегуляция – совокупность физиологических процессов, обеспечивающих постоянство температуры тела человека в допустимых физиологических границах 36,4 – 37,5 °С. Данный диапазон температур внутренних органов человека наиболее благоприятен для протекания в организме биохимических реакций и деятельности мозга.

12. При тепловом облучении допустимые значения какого параметра и в зависимости от какого фактора устанавливаются ГОСТ 12.1.005 – 88?

Допустимая интенсивность теплового облучения работающих в соответствии с санитарно-гигиеническими требованиями (ГОСТ 12.1.005 – 88) устанавливается в зависимости от площади облучаемой поверхности тела .

13. Какими способами обеспечивается защита работников от перегревания? Какой из способов является наиболее распространенным?

Способы обеспечения защиты работников от перегревания:

1) дистанционное управление ходом технологического процесса, 2) использование защитных экранов, 3) водяных и воздушных завес, 4) воздушное душирование, 5) применение спецодежды и средств индивидуальной защиты, 6) оборудование комнат или кабин для кратковременного отдыха с подачей в них кондиционированного воздуха.

14. Какие из исследуемых экранов являлись теплоотражающими? Из каких других материалов изготавливают такие экраны?

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов используют альфоль (ал. фольга), листовой алюминий, оцинкованную сталь, алюминиевую краску.

15. Какие из исследуемых экранов являлись теплопоглощающими? Из каких других материалов изготавливают такие экраны?

Теплопоглощающие экраны изготавливают из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, брезент, шлаковату.

16. Что используют на производстве в качестве теплоотводящих экранов?

В качестве теплоотводящих экранов используются водяные завесы, свободно падающие в виде пленки или орошающие другую экранирующую поверхность, либо заключенные в специальный кожух из стекла или металла змеевики с принудительно циркулирующей в них холодной водой.

Работа на промышленных предприятиях зачастую подразумевает выполнение трудовых функций в условиях воздействия различных факторов, представляющих потенциальную опасность для здоровья сотрудников и их трудоспособности. Одним из таких факторов является наличие теплового облучения на рабочем месте. В случае, если такое облучение имеет место, работодатель обязан принимать меры по нормированию его интенсивности, а также применять ряд защитных мер, чтобы снизить негативное воздействие на своих сотрудников.

Допустимые параметры теплового облучения

Разрешенная интенсивность теплового облучения в связи с характером производственного процесса установлена СанПиН 2.2.4.3359-16 «Санитарно-эпидемиологические требования к физическим факторам на рабочих местах» . В частности, этот документ устанавливает, что указанная интенсивность нормируется не только по абсолютным значениям, но и зависит от того, насколько велика площадь поверхности тела сотрудника, которая подвергается воздействию данного фактора.

При этом работодателю необходимо иметь в виду, что указанные нормативы действительно только для случаев, когда источник тепла, в непосредственной близости от которого работает сотрудник, нагрет до температуры, не превышающей 600 градусов. Если фактический уровень нагрева превышает этот порог, максимальный разрешенный уровень облучения должен составлять не более 140 Вт/кв.м, причем площадь поверхности тела, подвергающаяся облучению, должна составлять не более 25%. В таких условиях работник обязательно должен носить специальную защитную одежду и средства, закрывающие лицо и глаза.

Использование специальной одежды и других средств снижения вредного влияния

Вместе с тем, применение защитных средств и одежды в условиях повышенных температур в производственном помещении также имеет свои особенности. Так, в частности, их использование предполагает снижение нормативов температур, считающихся разрешенными в теплый сезон года, на два градуса. Указанное снижение должно быть применено в случае, если используемая одежда влечет за собой ухудшение характеристик теплообмена тела человека с окружающей средой. Это, в частности, описывается следующими параметрами одежды:

  • проницаемость воздуха ниже 50 куб.дм/кв.м;
  • проницаемость пара ниже 40 мг/кв.м*ч;
  • гигроскопичность ниже 7%.

Помимо предоставления спецодежды и защитных средств, работодатель должен обеспечить сотруднику соблюдение режимов максимальной длительности пребывания на рабочем месте с повышенной температурой и дать ему возможность отдыха в помещении с нормальными микроклиматическими условиями.

Разрешенная температура окружающего воздуха

В случае наличия интенсивного теплового излучения на рабочем месте необходимо предусмотреть нормирование температуры окружающего воздуха. При этом установленные пределы разрешенных температур находятся в тесной связи с тем, к какой категории работ по уровню энергетических затрат принадлежат выполняемые сотрудником трудовые функции. В частности, допустимыми считаются следующие температурные показатели.

Категория работ Уровень энергетических затрат Разрешенная температура воздуха
Ниже 139 Вт 25 градусов
От 140 до 174 Вт 24 градуса
IIа От 175 до 232 Вт 22 градуса
IIб От 233 до 290 Вт 21 градус
III Выше 290 Вт 20 градусов

Указанные параметры являются допустимыми для того, чтобы в рамках проведения обязательной процедуры специальной оценки условий труда в соответствии с требованиями Федерального закона от 28 декабря 2013 г. N 426-ФЗ «О специальной оценке условий труда» такие условия были признаны допустимыми или оптимальными. В случае, если работодатель в силу объективных причин не в состоянии добиться требуемых показателей по температуре в помещении, такие условия будут признаны вредными или опасными.

В существующей нормативно-технической документации нормируются следующие величины:

    интенсивность теплового облучения, Вт/м 2 ;

    температура воздуха рабочей зоны, о С;

    температура нагретых поверхностей технологического оборудования, о С;

    интегральный показатель тепловой нагрузки среды – ТНС-индекс, о С.

1. Интенсивность теплового облучения q пад, Вт/м 2 зависит от доли открытой поверхности тела человека S .

Согласно ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны» интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать значений, приведенных в таблице 2.1.

Таблица 2.1 – Зависимость интенсивности теплового облучения от доли открытой поверхности тела человека S

q пад, Вт/м 2

В любом случае облученность работающих открытыми источниками теплового излучения (нагретый металл, стекло, «открытое пламя» и т.п.) не должна превышать 140 Вт/м 2 , облучению не должно подвергаться более 0,25 поверхности тела при обязательном использовании средств индивидуальной защиты.

2. При наличии теплового облучения температура воздуха в соответствии с ГОСТ 12.1.005-88 не должна превышать на постоянных рабочих местах верхние границы оптимальных значений для теплого периода года, на непостоянных рабочих местах – верхние границы допустимых значений для постоянных рабочих мест (см. таблицу 2.2).

Таблица 2.2 – Допустимые значения температуры воздуха рабочей зоны, о С при наличии теплового излучения

3. В целях профилактики тепловых травм температура наружных поверхностей технологического оборудования или ограждающих его устройств не должна превышать 45 °С (ГОСТ 12.1.005-88 ).

В соответствии с ГОСТ 12.4.123-83 «Средства коллективной защиты от инфракрасных излучений. Общие технические требования» средства защиты должны обеспечивать температуру поверхностей оборудования не выше 35 °С при температуре внутри теплоисточника до 100 °С и не выше 45 °С при температуре внутри теплоисточника выше 100 °С.

4. ТНС-индекс рекомендуется использовать для оценки сочетанного воздействия параметров микроклимата, в целях осуществления мероприятий по защите работающих от возможного перегревания на рабочих местах, на которых скорость движения воздуха не превышает 0,6 м/с, а интенсивность теплового облучения – 1200 Вт/м 2 (см. лабораторную работу №1).

      1. Меры защиты

Основные мероприятия по снижению опасности воздействия ИК излучения на человека включают в себя: снижение интенсивности излучения источника; технические защитные средства; защиту временем, использование средств индивидуальной защиты, лечебно-профилактические мероприятия.

Cогласно ГОСТ 12.4.011-89 «Средства защиты работающих. Общие требования и классификация» средства промышленной теплозащиты должны удовлетворять следующим требованиям:

    обеспечивать оптимальный теплообмен организма работника со средой обитания;

    обеспечивать необходимую подвижность воздуха (повышение доли конвективной теплоотдачи) с целью достижения комфортных условий;

    иметь максимальную эффективность теплозащиты и обеспечивать удобство эксплуатации.

Все средства защиты работающих в зависимости от характера их применения подразделяют на две категории: коллективные и индивидуальные.

В соответствии с ГОСТ 12.4.011-89 и ГОСТ 12.4.123-83 к коллективным средствам теплозащиты относятся устройства: оградительные (экраны, щиты и др.); герметизирующие; теплоизолирующие; вентиляционные (воздушное душирование, аэрация и др.); автоматического контроля и сигнализации; дистанционного управления; знаки безопасности.

Выбор теплозащитных средств в каждом случае должен осуществляться по максимальным значениям эффективности с учетом требований эргономики, технической эстетики, безопасности для данного процесса или вида работ и технико-экономического обоснования.

Механизация и автоматизация производственных процессов, дистанционное управление и наблюдение дают возможность пребывания рабочих вдали от источника радиационной и конвекционной теплоты.

Уменьшению поступления теплоты в цех способствуют мероприятия, обеспечивающие герметичность оборудования . Плотно подогнанные дверцы, заслонки, блокировка закрытия технологических отверстий с работой оборудования – все это значительно снижает выделение теплоты от открытых источников.

Теплоизоляция поверхностей источников излучения (печей, сосудов и трубопроводов с горячими газами и жидкостями) снижает температуру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационное. Кроме улучшения условий труда тепловая изоляция уменьшает тепловые потери оборудования, снижает расход топлива (электроэнергии или пара) и приводит к увеличению производительности агрегатов.

Теплоизоляция конструктивно может быть мастичной , оберточной , засыпной , с использованием штучных и формовочных изделий (кирпичи и др.) и смешанной .

В настоящее время известно много различных видов теплоизоляционных материалов. К неорганическим материалам относятся: асбест, асбоцемент, вермикулит, керамзит, минеральная вата и войлок, стекловата и стеклоткань, ячеистый бетон и др. Органическими изоляционными материалами являются древесные опилки, пробковые, древесноволокнистые и торфоизоляционные плиты, пенопласт и др. При выборе материала для изоляции необходимо принимать во внимание механические свойства материалов, а также их способность выдерживать высокую температуру.

Теплозащитные экраны применяют для локализации источников лучистой теплоты, уменьшения облученности на рабочих местах и снижения температуры поверхностей, окружающих рабочее место.

По способу крепления на объекте экраны подразделяют на: съемные и встроенные .

По принципу действия экраны подразделяются на: теплоотражающие , теплопоглощающие, теплоотводящие и комбинированные . Отнесение экрана к той или иной группе производится в зависимости от того, какая способность экрана более выражена.

По степени прозрачности экраны делят на: непрозрачные (светопропускание менее 40%), полупрозрачные (светопропускание 40–75%) и прозрачные (светопропускание более 75%). В непрозрачных экранах энергия поглощенных электромагнитных волн превращается в тепловую энергию. Экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное экраном излучение источника теплового излучения. К этому классу относят металлические водоохлаждаемые и футерованные асбестовые, альфолиевые (из алюминиевой фольги), алюминиевые экраны.

В прозрачных экранах пропущенное излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Прозрачные экраны применяются для смотровых проемов пультов и кабин управления, щитков и т.д. Этот класс составляют экраны из различных стекол: силикатного, кварцевого и органического, бесцветного, окрашенного и металлизированного; пленочные водяные завесы, свободные и стекающие по стеклу; вододисперсные завесы. Водяные завесы поглощают поток тепла до 80 % без существенного ухудшения видимости. Высокой эффективностью обладают аквариальные экраны (до 93 %), представляющие собой коробку из двух стекол, заполненную проточной чистой водой с толщиной слоя 15 – 20 мм. Вододисперсная завеса представляет собой плоскую воздушную струю со взвешенными в ней капельками воды (эффективность около 70 %).

Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся экраны из металлической сетки, цепные завесы, экраны из стекла, армированного металлической сеткой; для повышения эффективности все эти экраны могут орошаться водяной пленкой.

Примеры характеристик конструкций оградительных устройств (экранов) приведены в Приложении 2.1.

В производственных помещениях для ассимиляции избыточной теплоты предусматривают естественную вентиляцию (аэрацию).

Аэрация – организованный естественный воздухообмен, осуществляемый за счет теплового и ветрового напоров.

При интенсивности теплового облучения на открытых рабочих местах 350 Вт/м 2 и выше и температуре воздуха не ниже 27 – 28 °С при проведении средней и тяжелой физической работы применяют зональное мелкодисперсное распыление воды . Водяная пыль, попадая на одежду и тело работающего, испаряясь, способствует охлаждению, а вдыхаемая водяная пыль предохраняет слизистые оболочки дыхательных путей от высыхания.

Для создания комфортных микроклиматических условий в ограниченном объеме (например, на рабочем месте) применяются: воздушные оазисы, воздушные завесы и воздушные души.

Воздушный оазис создают в отдельных зонах рабочих помещений с высокой температурой. Для этого часть рабочего помещения ограничивают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 – 0,4 м/с.

Воздушные завесы создают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10 – 15 м/с) под некоторым углом навстречу холодному потоку.

При воздействии на работающего теплового облучения интенсивностью 350 Вт/м 2 и более, а также 175 – 350 Вт/м 2 при площади излучающих поверхностей в пределах рабочего места более 0,2 м 2 применяют воздушное душирование. Воздушное душирование представляет собой поток воздуха, имеющий заданные параметры (температуру, скорость движения, иногда влажность), подаваемый непосредственно на рабочее место. Ось воздушного потока направляют на грудь человека горизонтально или под углом 45°. Охлаждающий эффект воздушного душирования зависит от разности температур тела работающего и потока воздуха, а также от скорости обтекания воздухом тела человека.

Эффективность любого теплозащитного устройства оценивается как:

где Э – эффективность теплозащитного устройства, %;

q пад – тепловой поток падающий на теплозащитное устройство (экран) от источника, Вт/м 2 ;

q проп – тепловой поток пропущенный теплозащитным устройством (экраном), Вт/м 2 .

К основным организационным мерам защиты относят:

Тепловая характеристика помещения устанавливается в зависимости от величины избытков явной теплоты.

Избытки явной теплоты Q яв (теплонапряженность) , Вт – тепловые потоки от всех источников (тепло, выделяемое печами, нагретым металлом, электрооборудованием, людьми, отопительными приборами, солнечным нагревом) за вычетом теплопотерь через ограждения при расчетных параметрах наружного воздуха.

Производственные помещения делят на: помещения с незначительными избытками явной теплоты с теплонапряженностью Q яв ≤23 Вт/м 3 =84 кДж/(м 3 ч) и помещения с избытками явного тепла с Q яв >23 Вт/м 3 (горячие цеха – доменные, сталеплавильные, прокатные и др.).

    организацию дополнительных перерывов в работе (график перерывов разрабатывается применительно к конкретным условиям работы и в зависимости от тяжести работ, с учетом того, что частые короткие перерывы более эффективны для поддержания работоспособности, чем редкие, но продолжительные).

    защиту временем во избежание чрезмерного общего перегревания и локального повреждения (ожог). Регламентируют продолжительность периодов непрерывного ИК облучения человека и пауз между ними в соответствии с Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» .

    организацию мест отдыха (где обеспечивают благоприятные условия);

    регулярные медосмотры для своевременного лечения.

К индивидуальным средствам относятся специальная одежда, фартуки, обувь, рукавицы. При защите от тепловых излучений спецодежда выполняется воздухо- и влагонепроницаемой (хлопчатобумажная, льняная, грубошерстное сукно). Для защиты головы от излучения применяют дюралевые, фибровые каски, войлочные шляпы; для защиты глаз – очки темные или с прозрачным слоем металла, маски с откидным экраном.

При кратковременных работах в условиях высоких температур (тушении пожаров, ремонте металлургических печей), где температура достигает 80 – 100 °С, большое значение имеет тепловая тренировка. Устойчивость к высоким температурам может быть в некоторой степени повышена лечебно-профилактическими мероприятиями : использование фармакологических средств (дибазола, аскорбиновой кислоты, смеси этих веществ и глюкозы), вдыхание кислорода, аэроионизация.

Для ослабления воздействия тепловых излучений на организм человека устанавливают рациональный питьевой режим – снабжают рабочих горячих цехов подсоленной газированной водой, белково-витаминным напитком и т.п.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Практический журнал для бухгалтеров о расчете заработной платы