Практический журнал для бухгалтеров о расчете заработной платы

Основные мероприятия, направленные на снижение опасности воздействия инфракрасного излучения, состоят в следующем: снижение интенсивности излучения источника, защитное экранирование источника или рабочего места, использование средств индивидуальной защиты, лечебно-профилактические мероприятия.Снижение интенсивности инфракрасного излучения источника достигается выбором технологического оборудования, обеспечивающего минимальные излучения.

Средства защиты от тепловых излучений подразделяются на коллективные и индивидуальные.

Среди коллективных наиболее распространенными средствами защиты от инфракрасного излучения являются устройства, соответствующие классификации, приведенной в ГОСТ 12.4.123-83. Согласно этого документа защита достигается следующими приемами:

– герметизацией оборудования

– использованием оградительных, теплоизолирующих устройств

– максимальной механизацией и автоматизацией технологических процессов с выводом работающих из «горячих зон» (дистанционное управление)

– оптимальным размещением оборудования и рабочих мест

– средствами вентиляции

– автоматическим контролем и сигнализацией

– примененим средств коллективной и индивидуальной защиты.

К средствам коллективной защиты относятся оградительные устройства – это конструкции, отражающие поток электромагнитных волн или преобразующие энергию инфракрасного излучения в тепловую энергию, которая отводится или поглощается конструктивными элементами защитного устройства (экраны, водяные и воздушные завесы). Возможен комбинированный принцип действия оградительных устройств. Примером отражающих оградительных устройств являются конструкции, состоящие из одной или нескольких пластин, которые размещены параллельно и с зазором. Охлаждение пластин осуществляется естественным или принудительным способом. С помощью этих устройств ограждаются излучающие поверхности или рабочее место оператора. Для локализации инфракрасного излучения от стен печей, нагретых материалов, а также для ограждения кабин операторов используются полированные пластины из алюминия толщиной 1-1,5мм, устанавливаемые с зазором 25-30м, смотровые проемы ограждаются листовыми стеклами, установленными с зазором 20-30мм.

Локализация инфракрасного излучения о нагретых стен и открытых проемов печей может осуществляться с помощью экранов из металлического листа; укрывающего набора труб, по которым под напором движется вода. Аналогичный эффект достигается с помощью устройства, состоящего из сварных заслонок, которые футерованы огнеупорными материалами. Охлаждение этого экрана осуществляется водовоздушной смесью.

Экраны могут быть изготовлены из металлической сетки или из подвешенных металлических цепей, интенсивно орошаемых водой. Сетка используется для экранирования нагретых продуктов переработки, а цепи – для экранирования открытых проемов печей. Если температура источника тепла не превышает 373К (100 0 С), то поверхность оборудования должна иметь температуру не более 308К (35 0 С), а при температуре источника выше 373К (100 0 С) – не более 318К (45 0 С).

Для выбора средств защиты от переоблучения необходимы сведения о величине плотности потока энергии для конкретных условий работы.

Различные виды сварки (в том числе аргонодуговая сварка цветных металлов) характеризуются интенсивным излучением электромагнитных волн. При сварке титанового сплава суммарный уровень облученности на расстоянии 0,2мм от сварочной дуги составляет 5500Вт/м 2 (длина волны в интервале 0,2-3,0 мкм). Основные составляющие облучения – это инфракрасное излучение в диапазоне от 0,76 до 3,0 мкм (62,3%) и ультрафиолетовое излучение с длиной волны 0,2-0,4мкм (24%). На расстоянии 0,5м уровень облученности снижается в 3,5раза.

Сварка алюминиевого сплава АМГ характеризуется еще большей интенсивностью электромагнитного излучения; при этом на расстоянии 0,2м от дуги она достигает 7000 Вт/м 2 . В спектре преобладает интенсивное инфракрасное излучение в диапазоне от 0,76 до 3,0 мкм (23-48%) и ультрафиолетовое излучение (24%). Увеличение расстояния до 0,5 м снижает облученность в 1,5-2 раза. При сварке меди суммарная облученность значительно меньше, но в данном случае наибольшую интенсивность имеет инфракрасное излучение с длиной волны 0,2-0,4 мкм и с преобладанием инфракрасного излучения в 1,5 мкм и выше.

Теплоизоляция горячих поверхностей снижает температуру излучающей поверхности и уменьшает как общие выделения теплоты, так и лучистую его часть. Кроме улучшения условий труда теплоизоляция уменьшает тепловые рлтери оборудования, снижает расходы топлива (электороэнергии, пара) и приводит к увеличению производительности агрегатов. Теплозащитныеустройства должны обеспечивать:

Интенсивность теплового излучения на рабочих местах ≤350 Вт/м 2

Температуру поверхности оборудования ≤35 0 С (температура внутри источника до 100 0 С) и ≤45 0 С (при температуре внутри источника >100 0 С).

К средствам коллективной защиты относятся также такие приемы, как сокращение продолжительности смены, рабочего стажа, организация подсмен, питьевого режима (5 л/смену на человека подсоленной газированной воды, чая).

В качестве средств индивидуальной защиты используются:

– специальные костюмы невоспламеняемого, стойкого к тепловому излучению,прочного, мягкого, влагоемеого, гигроскопичного материала (например, суконо, лен, брезент)

– валенки или ботинки

– рукавицы суконные или брезентовые

– широкие суконные, войлочные, фетровые шляпы или каски

– очки защитные со светофильтрами.

Федеральное агентство по образованию

Государственное образовательное учреждение

«Ивановский государственный энергетический

Университет имени »

Кафедра «Безопасности жизнедеятельности»

ЗАЩИТА ОТ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

ИК-излучение, помимо усиления теплового воздействия окружающей среды на организм работающего, обладает специфическим влиянием. С гигиенической точки зрения важной особенностью ИК-излучения является его способность проникать в живую ткань на разную глубину.


Лучи длинноволнового диапазона (от 3 мкм до 1 мм) задерживаются в поверхностных слоях кожи уже на глубине 0,1 - 0,2 мм. Поэтому их физиологическое воздействие на организм проявляется, главным образом, в повышении температуры кожи и перегреве организма.

Наибольшее воздействие на организм человека оказывает коротковолнового диапазона (от 0,77 до 1,4 мкм), так как оно обладает наибольшей энергией фотонов и способно глубоко проникать в ткани организма и интенсивно поглощаться водой, содержащейся в тканях. В практических условиях тепловое излучение является интегральным, так как нагретые тела излучают одновременно в широком диапазоне длин волн.

Под действием высоких температур и теплового облучения работающих происходят резкое нарушение теплового баланса в организме, биохимические сдвиги, появляются нарушения сердечно-сосудистой и нервной систем, усиливается потоотделение, происходит потеря нужных организму солей, нарушение зрения.

Все эти изменения могут проявиться в виде заболеваний:

- судорожная болезнь , вызванная нарушением водно-солевого баланса, характеризуется появлением резких судорог, преимущественно в конечностях;

- перегревание (тепловая гипертермия) возникает при накоплении избыточного тепла в организме; основным признаком является резкое повышение температуры тела;

- тепловой удар возникает в особо неблагоприятных условиях: выполнение тяжелой физической работы при высокой температуре воздуха в сочетании с высокой влажностью. Тепловые удары возникают в результате проникновения коротковолнового инфракрасного излучения (до 1,5 мкм) через покровы черепа в мягкие ткани головного мозга;

- катаракта (помутнение кристалликов) – профессиональное заболевание глаз, возникающее при длительном воздействии инфракрасных лучей с λ = 0,78-1,8 мкм. К острым нарушениям органов зрения относятся также ожог, конъюктивиты, помутнение и ожог роговицы, ожог тканей передней камеры глаза.

Кроме того, ИК-излучение воздействует на обменные процессы в миокарде, водно-электролитный баланс в организме, на состояние верхних дыхательных путей (развитие хронического ларингоринита, синуситов), не исключается мутагенный эффект теплового излучения.

Поток тепловой энергии, кроме непосредственного воздействия на работающих, нагревает пол, стены, перекрытия, оборудование, в результате чего температура воздуха внутри помещения повышается, что также ухудшает условия работы.

2. НОРМИРОВАНИЕ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

И СПОСОБЫ ЗАЩИТЫ ОТ НЕГО

Интенсивность теплового облучения человека регламентируется, исходя из субъективного ощущения человеком энергии облучения. Согласно интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов не должна превышать: 35 Вт/м2 при облучении более 50 % поверхности тела; 70 Вт/м2 при облучении от 25 до 50 % поверхности тела; 100 Вт/м2 - при облучении не более 25 % поверхности тела. От открытых источников (нагретые металл и стекло, открытое пламя) интенсивность теплового облучения не должна превышать 140 Вт/м2 при облучении не более 25 % поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Нормы ограничивают также температуру нагретых поверхностей оборудования в рабочей зоне, которая не должна превышать 45 °С, а для оборудования, внутри которого температура близка к 100 °С, температура на его поверхности должна быть не выше 35 °С.

В производственных условиях не всегда возможно выполнить нормативные требования. В этом случае должны быть предусмотрены мероприятия по защите работающих от возможного перегрева : дистанционное управление ходом технологического процесса; воздушное или водо-воздушное душирование рабочих мест; устройство специально оборудованных комнат, кабин или рабочих мест для кратковременного отдыха с подачей в них кондиционированного воздуха; использование защитных экранов, водяных и воздушных завес; применение средств индивидуальной защиты, спецодежды, спецобуви и др.

Одним из самых распространенных способов борьбы с тепловым излучением является экранирование излучающих поверхностей. Различают экраны трех типов: непрозрачные, прозрачные и полупрозрачные.

В непрозрачных экранах энергия электромагнитных колебаний взаимодействует с веществом экрана и превращается в тепловую энергию. Поглощая излучение, экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника. К непрозрачным экранам относятся, например, металлические (в т. ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло , керамзит, пемза), асбестовые и др.

В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Так ведут себя экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.

Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой.

По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие и теплоотводящие. Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др.

Оценить эффективность защиты от теплового излучения с помощью экранов можно по формуле:

(2)

где Q - интенсивность теплового излучения без применения защиты, Вт/м

Q3 - интенсивность теплового излучения с применением защиты, Вт/м2.

При устройстве общеобменной вентиляции , предназначенной для удаления избытка явного тепла, объем приточного воздуха Lnp (м3/ч) определяют по формуле:

где Qi - избыток явного тепла, кДж/ч;

Ту - температура удаляемого воздуха, °С;

Тпр - температура приточного воздуха, °С;

ρпр - плотность приточного воздуха, кг/ м3;

с - удельная теплоемкость воздуха, кДж/кг∙град.

Температуру воздуха, удаляемого из помещения, определяют по формуле:

где Тр. з - температура в рабочей зоне, которая не должна превышать установленную санитарными нормами , °С;

∆T- температурный градиент по высоте помещения, °С/м; (обычно 0,5 - 1,5 °С/м);

H - расстояние от пола до центра вытяжных проемов, м;

2 - высота рабочей зоны, м.

Если количество образующихся тепловыделений незначительно или не может быть точно определено, то общеобменную вентиляцию рассчитывают по кратности воздухообмена n, которая показывает, сколько раз в течение часа происходит смена воздуха в помещении (обычно n находится пределах от 1 до 10, причем для помещений небольшого объема используются более высокие значения n).

Местную приточную вентиляцию широко используют для создания требуемых параметров микроклимата в ограниченном объеме, в частности, непосредственно на рабочем месте. Это достигается созданием воздушных оазисов, воздушных завес и воздушных душей.

Воздушный оазис создают в отдельных зонах рабочих помещений с высокой температурой. Для этого небольшую рабочую площадь закрывают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 - 0,4 м/с.

Воздушные завесы создают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10-15 м/с) под некоторым углом навстречу холодному потоку.

Воздушные души применяют в горячих цехах на рабочих местах, находящихся под воздействием лучистого потока теплоты большой интенсивности (более 350 Вт/ м2).

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае у рабочего возникают неприятные ощущения (например, шум в ушах). Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ).

2.1. ОПИСАНИЕ СТЕНДА

Внешний вид стенда представлен на рисунке 1.

Стенд представляет собой стол со столешницей 1, на которой размещаются бытовой электрокамин 2, индикаторный блок 3, линейка 4, стойки 5 для установки сменных экранов 6, стойка 9 для установки измерительной головки 7 измерителя тепловых потоков, вентилятора 8, водяного насоса 14, душ 10, емкость с водой 11.

Стол выполнен в виде металлического сварного каркаса со столешницей и полкой, на которой хранятся сменные экраны 6.

Бытовой электрокамин 2 используется в качестве источника теплового излучения.

Вентилятор 8 используется в качестве источника "воздушной завесы" и устанавливается на стойке 12 с помощью хомута 13 .

Металлические стойки 5 для установки сменных защитных экранов 6 обеспечивают их оперативную установку и замену.

Для установки измерительной головки 7 служит вертикальная стойка 9, закрепленная на плоском основании 15. На стойке 9 с помощью струбцины 16 с винтами крепится измерительная головка 7. Стойку можно вручную перемещать по столешнице вдоль линейки 4.

Стандартная металлическая линейка 4 предназначена для измерения расстояния от источника теплового излучения (электрокамина 2) до измерительной головки 7 и жестко закреплена на столешнице 1.

Водяной насос 14, душ 10 и емкость с водой 11 служат для создания «водяной завесы» совместно со стеклянным экраном 6. Душ 10 крепится к стойкам 5 при помощи двух хомутов 17.

Сменные экраны 6 имеют одинаковый размер, что позволяет поочередно устанавливать их между стойками 5. Металлические экраны выполнены в виде листов металла с направляющими. Экраны с цепями и брезентом выполнены в виде металлических рамок, в которых закреплены стальные цепи или брезент.

На левой боковой поверхности стола расположены выключатели 18, которые позволяют подключать к сети переменного тока электрокамин 2, вентилятор 8, измеритель теплового потока ИПП-2М и водяную помпу 14.

Рисунок 1. Внешний вид установки

2.2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПРИ ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

К работе допускаются студенты, ознакомленные с устройством лабораторного стенда, принципом действия и мерами безопасности при проведении лабораторной работы.

Запрещается использовать воздушную помпу более 30 минут непрерывно.

Не допускается работа с металлическим экраном более 5 мин.

Запрещается прикасаться к электронагревательному элементу электрокамина.

Смену экранов производить в теплоизоляционной рукавице.

Запрещается включать «водяную завесу» на разогретый стеклянный экран во избежание его повреждения.

После проведения лабораторной работы отключить электропитание стенда.

2.3. ПОРЯДОК ПРОВЕДЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

2.3.1. Подключить лабораторный стенд к сети переменного тока. Включить источник теплового излучения и измеритель теплового потока ИПП-2м.

2.3.2. Установить головку 7 (см. рисунок 1) измерителя теплового потока в штативе таким образом, чтобы она была смещена относительно стойки 9 примерно на 100 мм (в направлении к источнику 2 теплового излучения). Вручную перемещать штатив вдоль линейки, устанавливая головку измерителя на различном расстоянии от источника теплового излучения, и определять интенсивность теплового излучения в этих точках (интенсивность определять как среднее значение не менее 5 замеров). Данные замеров занести в таблицу. Построить график зависимости среднего значения интенсивности теплового излучения от расстояния.

2.3.3. Устанавливая различные защитные экраны, определить интенсивность теплового излучения на расстояниях, заданных преподавателем. Оценить эффективность защитного действия экранов по формуле (2). Построить график зависимости среднего значения интенсивности теплового излучения от расстояния.

При проведении экспериментов с водяной завесой установить стеклянный экран и, включив водяную помпу, создать стекающую по стеклу водяную завесу. Провести необходимые измерения, затем выключить водяную помпу и спустя 2-3 минуты (после установления теплового режима экрана) повторить измерения.

2.3.4 . Установить защитный экран (по указанию преподавателя). Разместить рядом с ним воздуходувку, направив её сопло 14 в центр экрана под некоторым углом. Включить воздуходувку, имитируя устройство воздушного душирования, и спустя 2-3 минуты (после установления теплового режима экрана) определить интенсивность теплового излучения на тех же расстояниях, что и в п. 2.3.3. Оценить эффективность комбинированной тепловой защиты по формуле (2). Построить график зависимости интенсивности теплового излучения от расстояния.

2.3.5. Установить воздуходувку на расстоянии мм до головки измерителя теплового потока, направив поток воздуха перпендикулярно тепловому потоку - имитация «воздушной завесы». С помощью датчика температуры ИПП-2м измерить температуру воздуха в месте размещения тепловых экранов без воздушной завесы и с завесой. С помощью головки измерителя теплового потока убедиться в диатермичности воздуха, замеряя интенсивность теплового излучения без воздушной завесы и с завесой.

Составить отчет о работе.

3. СОДЕРЖАНИЕ ОТЧЕТА О ЛАБОРАТОРНОЙ РАБОТЕ

Курс, группа, состав бригады.

Общие сведения.

Данные измерений (табл. 1)

Таблица 1. Результаты измерений

Графики зависимости интенсивности теплового излучения от расстояния.

Расчет эффективности защитного действия экранов.

Расчет эффективности комбинированной защиты.

Контрольные вопросы

Назовите источники тепловых излучений в производственных условиях?

Назовите области ИК-диапазона спектра излучения и их длины волн.

От чего зависит тепловой эффект воздействия на организм человека?

От какой величины зависит глубина проникания лучистого тепла через кожный покров человека?

Как влияет длина волны излучения на организм человека?

Опишите возможные последствия теплового облучения для организма человека.

Охарактеризуйте основные меры защиты от теплового излучения в производственных условиях.

Принцип работы защитных экранов, устанавливаемых на пути теплового потока.

Дайте оценку эффективности экрана из цепей и водяной завесы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Охрана труда. . - М.: Высшая школа, 198с.

2. Безопасность жизнедеятельности. Учебник для вузов / , и др. М. : Высшая школа, 19с..

3. ГОСТ 12.4.«ССБТ. Средства защиты от инфракрасного излучения.
Классификация. Общие технические требования. Госстандарт СССР, 19с.

4. ГОСТ 12.1.«ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические
требования». Издательство стандартов, 19с.

5. СанПиН 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений. М. : Информационно-издательский центр Госкомсанэпиднадзора России, 19с.

Защита человека от избыточного теплового излучения осу­ществляется по следующим направлениям: теплоизоляция нагретых поверхностей, экранирование теплового излучения, использование воздушного дублирования, использование защитной одежды.

Теплоизоляция позволяет не только уменьшить величинуинтенсивности излучения на рабочем месте, но и уменьшить тепловыделения в рабочую зону, а также исключить возможность ожо­гов при прикосновении к нагретым поверхностям.

Согласно санитарным нормам (СН 245-71), температура по­верхностей машин, механизмов и прочего производственного оборудования, с которым возможен контакт рабочего, должка иметь температуру не выше +45°С.

Наиболее распространенным и эффективным способом защиты от излучения является экранирование. Экраны применяюткак для экранирования источников, так и дня зашиты рабочего места. По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие и теплоотводящие.

В качестве материалов для теплоотражающих экранов исполь­зуются листовой алюминий, белая жесть, алъфоль (алюминиевая фольга) и другие материалы, имеющие хорошие отражательные способности.

Материалом для теплопоглощающих экранов служат вещества с достаточно высоким термическимсопротивлением -асбест, огнеупорный кирпич, минеральная вата и т. д. К теплопоглощающим относятся также экраны в виде цепных звеньев. Такой экран ус­тупает по эффективности сплошным и поэтому используется,какправило, при интенсивности излучения до 1160 Вт/м 2 , но остав­ляет открытым доступ в рабочее пространство печи.

Теплоотводящие экраны представляют собой различные кон­струкции, охлаждаемые, как правило, водой. Используются при любых интенсивностях излучений. Наиболее простым по съеме и распространенными в практике являются экраны в виде водяной завесы, встраиваемой у рабочих окон печей.

При относительно небольших интенсивностях излучений (до 2320 Вт/м 2) с целью сохранения теплового баланса в организме человекаи, как следствие его полной трудоспособности, исполь­зуется воздушное душирование или обдувание на рабочем месте от переданных или стационарных вентиляционных установок.

Скорости подаваемого потока воздуха в зависимости от ка­тегории работы, времени года, температуры воздуха и величины интенсивности излучения (при нормальной относительной влажности = 40-60 % и барометрическом давлении 1013 гПА приве­дены в СН 245-71).

Результаты экспериментальных

Исследований

Экранирование цепями Водяная завеса Стекло
Без экрана 1 экран 2 экрана 3 экрана Без завесы С завесой
Кал/см 2 мин 0,8 0,6 0,5 0,4 0,8 0,4 0.2
Вт/м 2
Эффективность экранирования, % 37,5
Допустимое время облучения Переносимо в течении раб дня и более Переносимо в течении раб дня и более Порог чувствительности
Длина волны излучения с max энергии l MAX = 3,25 мкм
Температура источника в 0 С Т = 893,46
Допустимое значение облученности в Вт/м 2 [Е Р.М. ] = 330

По результатам исследований можно судить о необходимости экранирования теплового излучения при действии его на человека, условно находящего в лаборатории в 30 см от источника. Как видно, без экрана тепловое излучение будет выше допустимого значения, что неблагоприятно сказывается как на здоровье самого рабочего, так и на его труде. Допустимое значение облученности удовлетворяется и при экране из трёх цепей, а также при экране из сплошного стекла. Также можно сделать вывод, что для экранирования теплового излучения целесообразней применять экран из стекла.

Для защиты от теплового излучения используют различные теплоизолирующие материалы, устраивают теплозащитные экраны и специальные системы вентиляции (воздушное душирование). Перечисленные выше средства защиты носят обобщающее понятие теплозащитных средств. Теплозащитные средства должны обеспечивать тепловую облученность на рабочих местах не более 35 Вт/м 2 и температуру поверхности оборудования не выше 35°С при температуре внутри источника тепла до 100°С и не выше 45°С – при температуре внутри источника тепла выше 100°С.

Основным показателем, характеризующим эффективность теплоизоляционных материалов, является низкий коэффициент теплопроводности, который составляет для большинства из них 0,025-0,2 Вт/(м·К).

Наиболее простым методом защиты от тепловых излучений является защита расстоянием.

Защита расстоянием от опасного воздействия осуществляется в помещениях с избытками тепла от производственных объектов (печей, топок, реакторов и т.д.). Обычно осуществляется механизацией и автоматизацией производственных процессов, дистанционным управлением ими. Автоматизация процессов не только повышает производительность, но и улучшает условия труда, поскольку работники выводятся из опасной зоны и осуществляют контроль или управление технологическими процессами из помещений с нормальными микроклиматическими условиями.

При температуре воздуха на рабочих местах выше или ниже допустимых величин в целях защиты работающих от возможного перегревания или переохлаждения ограничивают время пребывания на рабочих местах (непрерывно или суммарно за рабочую смену) СанПиН 2.2.4.548–96 . При работе закрытых необогреваемых помещениях в холодное время года при определенных температурах и скоростях движения воздуха устанавливают перерывы для обогревания рабочих.

Одним из самых распространенных способов борьбы с тепловым инфракрасным излучением является экранирование излучающих поверхностей. Различают экраны трех типов: непрозрачные, прозрачные и полупрозрачные.

В непрозрачных для ИК излучения экранах поглощаемая энергия электромагнитных колебаний, взаимодействуя с веществом экрана, превращается в тепловую энергию. При этом экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника. К непрозрачным экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др.

В прозрачных для ИК излучения экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Так ведут себя экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.


Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой.

По принципу действия экраны классифицируют на теплоотражающие, теплопоглощающие и теплоотводящие.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др.

Оценить эффективность снижения интенсивности от теплового излучения с помощью экранов можно по формуле:

где Q – интенсивность теплового излучения без применения защиты, Вт/м 2 ;

Q З – интенсивность теплового излучения с применением защиты, Вт/м 2 .

При устройстве общеобменной вентиляции, предназначенной для удаления избытка явного тепла, объем приточного воздуха L ПР (м 3 /ч) определяют по формуле:

где Q ИЗБ – избыток явного тепла, кДж/ч;

T УД – температура удаляемого воздуха, °С;

T ПР – температура приточного воздуха, °С;

ρ ПР – плотность приточного воздуха, кг/м 3 ;

c – удельная теплоемкость воздуха, кДж/кг×град.

Температуру воздуха, удаляемого из помещения, определяют по формуле:

где T РЗ – температура в рабочей зоне, которая не должна превышать установленную санитарными нормами, °С;

DT – температурный градиент по высоте помещения, °С/м; (обычно 0,5 – 1,5 °С/м);

Н – расстояние от пола до центра вытяжных проемов, м;

2 – высота рабочей зоны, м.

Способы защиты от лучистого тепла следующие: теплоизоляция горячих поверхностей, экранирование тепловых излучений, применение воздушного душирования, применение защитной одежды, организация рационального отдыха. Теплоизоляция является эффективным мероприятием не только по уменьшению интенсивности теплового излучения от нагретых пoверхностей, но и общих тепловыделений, а также для предотвращения ожогов при прикосновении к этим поверхностям. По действующим санитарным нормам температура нагретых поверхностей оборудования (например, печей) и ограждений на рабочих местах не должна превышать 45°С.

Для теплоизоляции применяют самые разнообразные материалы и конструкции (специальные бетоны и кирпич, минеральную и стеклянную вату, асбест, войлок и т.д.).

Наиболее распространенным и эффективным способом защиты от излучения является экранирование. Экраны применяют как для экранирования источников излучения, так и для защиты рабочих мест от воздействия лучистого тепла.

По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие, теплоотводящие. Это деление в известной степени условно, так как любой экран обладает способностью отражать, поглощать или отводить тепло. Принадлежность экрана к той или иной группе зависит от того, какое свойство отражено в нем наиболее сильно.

В зависимости от возможности наблюдения за рабочим процессом экраны можно разделить на три типа: непрозрачные, полупрозрачные и прозрачные.

Материалами для теплоотражающих экранов служат листовой алюминий, белая жесть, альфоль (алюминиевая фольга), укрепляемые на несущем материале -- картоне, сетке и т.п.

В теплопоглощающих экранах применяют материалы с большим термическим сопротивлением (асбестовые щиты на металлической сетке или листе, огнеупорный кирпич и т.д.), вследствие чего температура наружной поверхности резко уменьшается.

Теплоотводящие экраны представляют собой сварные или литые конструкции, охлаждаемые протекающей внутри водой. Они могут применяться при любых интенсивностях излучения.

К полупрозрачным теплопоглощающим экранам относятся металлические сетки (размер ячейки 3--3,5 мм), цепные звенья, армированное стекло. Такие экраны уступают по эффективности сплошным экранам, поэтому их применяют при интенсивности излучения менее 1000 ккал/м 2 -ч.

Металлические сетки, орошаемые водой, являются теплоотводящими экранами, применяют их также при небольших интенсивностях излучения.

Для прозрачных экранов используют силикатное, кварцевое или органические стекло, тонкие (до 2 нм) металлические пленки на стекле.

Наибольшее распространение получили водяные завесы, устраиваемые у рабочих окон печей в том случае, когда через экран необходимо вводить инструмент, заготовки и т.д.

При выполнении трудоемких работ правильная организация отдыха имеет большое значение для восстановления работоспособности. Для рабочих устраивают специальные места отдыха, расположенные недалеко от места работы, но, в то же время, достаточно удаленные от источников излучения снабженные вентиляцией, питьевой водой и т.д.

Теплота излучения воздухом почти не поглощается, она передается от более нагретых тел к телам с меньшей температурой, вызывая их нагревание. Окружающий воздух нагревается не тепловым излучением, а конвекцией, т.е. при соприкосновении с поверхностями нагретых тел. Превышение температуры воздуха в помещении выше оптимальной вызывает нарушение нормальной терморегуляции организма и может быть причиной расстройства сердечно-сосудистой системы. В ряде случаев возможно внезапное заболевание, называемое тепловым ударом.

Санитарные нормы допускают воздействие теплоты излучения на организм работающих в количестве не более 1,25 МДж/(м 2 *ч).

Температура нагретых поверхностей производственного оборудования и ограждений на рабочих местах (печей, ванн и др.) не должна превышать 45°С, а для оборудования, внутри которого температура равна или ниже 100°С, температура на поверхности не должна превышать 35°С.

Для защиты людей от вредного воздействия теплового излучения и высоких температур применяют теплоизоляцию горячих поверхностей, например путем обмазки наружных поверхностей котлов и трубопроводов горячей воды каким-либо строительным раствором с наполнителем в виде стекловаты или асбеста. Общей защитой от излучения могут служить экраны из малотеплопроводных материалов (асбест, шифер), а в качестве средств индивидуальной защиты применяются спецодежда (брезентовые или суконные костюмы), очки со светофильтрами, щитки из органического стекла и др.

В горячих цехах существенную роль играет снабжение рабочих питьевой подсоленной или газированной водой, употребление которой улучшает водный баланс организма.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Практический журнал для бухгалтеров о расчете заработной платы