Практический журнал для бухгалтеров о расчете заработной платы

Обеспечение полноценной световой среды в жилых помещениях. Стремительно растущая урбанизация изменяет интенсивность и спектральный состав солнечной радиации y поверхности Земли -- вследствие загрязнения атмосферного воздуха, снижающего его прозрачность, и существенного затенения территории плотной многоэтажной застройкой. Ограниченная прозрачность остекления светопроемов, их затеняемость, а зачастую несоответствие размеров площади окон глубине помещений вызывают повышенный дефицит естественного света в помещениях. Недостаток естественного света ухудшает условия зрительной работы и создает предпосылки для развития у городского населения синдрома "солнечного (или светового) голодания", снижающего устойчивость организма к воздействию неблагоприятных факторов химической, физической и бактериальной природы, а по последним данным -- и к стрессовым ситуациям. Поэтому дефицит естественного света и денатурация световой среды отнесены к факторам, неблагоприятным для жизнедеятельности человека.

В больших городах особое значение имеет качество световой среды внутри помещения, где человеку должен быть обеспечен не только зрительный комфорт, но и необходимый биологический эффект от освещения. Последний определяется в основном условиями освещения помещений естественным светом, под которым понимается рассеянный свет небосвода, проникающий через светопроемы, и прямыми солнечными лучами (инсоляцией). Эти природные факторы должны присутствовать в достаточном количестве в каждом помещении, предназначенном для длительного пребывания человека, и прежде всего в помещениях жилых зданий.

Естественное освещение и инсоляция. В закрытых помещениях световая среда существенно денатурирована, а естественные оптические факторы ослаблены, так как светопроемы составляют относительно небольшую часть ограждений, пропуская около 50% падающего на них света и лишь незначительную долю ультрафиолетового излучения.

Для обеспечения полноценной световой среды в жилых зданиях действующими нормами и правилами регламентируются минимальная величина коэффициента естественной освещенности (к.е.о.), режим и длительность инсоляции.

В соответствии с требованиями СНиП 23-05-95 "Естественное и искусственное освещение. Нормы проектирования" величина к.е.о. для основных помещений жилых зданий (комнат и кухонь) в средней светоклиматической полосе установлена не ниже 0,4% для зон с устойчивым снежным покровом и не ниже 0,5% -- для остальной территории. Снижение к.е.о. в комнатах и кухнях жилых зданий не допускается. Это требование обусловлено особой биологической значимостью естественного света в помещениях и невозможностью восполнения его дефицита современными средствами искусственного освещения.

Наряду с общебиологическим влиянием естественное освещение оказывает выраженное психологическое воздействие на организм человека. Свободный зрительный контакт с внешним миром через светопроемы достаточного размера и изменчивость дневного освещения (колебания интенсивности, равномерности, соотношений яркости, хроматичности света на протяжении дня) оказывают большое влияние на психику человека. Поэтому с гигиенической точки зрения в зданиях разного назначения необходимо предусматривать максимально возможное использование естественного освещения. Если в помещениях, предназначенных для длительного пребывания людей, обеспечить достаточное естественное освещение невозможно, то следует упорядочить дневной режим этих людей, установив для них время периодического пребывания под открытым небом в часы с достаточным естественным освещением (например, в обеденный перерыв или путем смещения графика работы).

Большое внимание уделяется в последнее время проблеме инсоляции жилых зданий. Инсоляция -- это важный гигиенический фактор, она обеспечивает поступление в помещение дополнительной световой знергии, тепла и ультрафиолетового излучения Солнца, влияет на самочувствие и настроение человека, микроклимат жилища и снижение его обсемененности микроорганизмами. Опрос больших групп населения показал положительное отношение к инсоляции жилых и общественных помещений у людей, проживающих как в северных и центральных, так и в южных районах Российской Федерации. Параллельно проведенное изучение психофизиологического состояния части опрошенных выявило улучшение их работоспособности, самочувствия и настроения в хорошо инсолируемых помещениях.

Совмещенное освещение. Дефицит естественного освещения в ряде помещений жилых и общественных зданий требует комплексного решения проблемы его восполнения искусственным освещением, в частности с помощью системы совмещенного освещения.

Основной гигиенический недостаток применения совмещенного освещения обусловлен разной биологической эффективностью естественного и искусственного света, которая не в полной мере учитывается при нормировании освещения.

Неблагоприятное воздействие на организм замены естественного света искусственным подтверждается и данными биологических экспериментов по изучению иммунологической реактивности животных и их устойчивости к химической нагрузке. Полученные результаты позволили показать биологическую неадекватность естественного и искусственного света одинаковой интенсивности.

Совмещенное освещение должно улучшать положение в тех помещениях, в которых по разным причинам (строительным, эксплуатационным и т. п.) не может быть обеспечено удовлетворительное дневное освещение. Во вновь проектируемых жилых зданиях следует изыскивать возможности полноценного естественного освещения.

В том случае, когда дневное освещение постоянно дополняется общим или комбинированным искусственным, большое значение имеет выбор источников света и светильников, а также их размещение в помещении. При совмещенном освещении нельзя применять лампы накаливания. Для этого целесообразно использовать люминесцентные лампы белого и дневного света, выбираемые с учетом ориентации помещения, а на крупных общественных объектах (вокзалы, спортивные залы и т. п.) --- ртутные лампы высокого давления. Размещение и тип светильников должны обеспечивать автономный подсвет зоны с недостаточным естественным освещением и однонаправленность теней.

Искусственное освещение помещений в жилых зданиях. Основные гигиенические требования к искусственному освещению в быту сводятся к тому, чтобы освещение интерьеров соответствовало их назначению: света было достаточно (он не должен слепить и оказывать иного неблагоприятного влияния на человека и на среду), осветительные приборы были легко управляемыми и безопасными, а их расположение способствовало функциональному зонированию жилищ; выбор источников света производится с учетом восприятия цветового решения интерьера, спектрального состава света и благоприятного биологического воздействия светового потока.

До настоящего времени в жилых помещениях целесообразным с гигиенической точки зрения считается применение светильников с лампами накаливания как более удобных в эксплуатации, легко регулируемых, бесшумных и не излучающих ультрафиолетового потока. Экономичные люминесцентные светильники рекомендуется использовать в основном для освещения вспомогательных помещений с кратковременным пребыванием людей (прихожей, ванной и т. п.) Установка их в кухнях требует применения спектрального типа ламп, точно передающего естественный вид продукта. При освещении люминесцентными светильниками, например, письменного стола необходимо наряду с правильным подбором спектрального типа ламп устранение пульсации их светового потока.

Обогащение светового потока установок искусственного освещения ультрафиолетовым излучением. Проблема обогащения искусственного света ультрафиолетовым излучением (УФИ) весьма актуальна в настоящее время, когда денатурация световой среды в городах и увеличение времени пребывания человека в условиях искусственного освещения требуют широкой профилактики возможного развития симптомов светового голодания у людей, сопровождающихся снижением резистентности организма к воздействию неблагоприятных факторов и повышением заболеваемости. Наиболее удобным и эффективным приемом профилактики светового голодания является использование в системе общего освещения помещений с длительным пребыванием людей свето-облучательных установок, создающих световой поток, обогащенный УФИ. При этом может использоваться двойная система ламп -- осветительных и эритемных, излучающих УФ-поток в диапазоне длин волн 280-320 нм, или единая система -- с полифункциональными осветительно-облучательными лампами, генерирующими одновременно видимый свет и УФИ (спектр их излучения охватывает область 280-700 нм), которые обеспечивают получение человеком за 8 часов рабочего дня 0,125-0,25 МЭД (минимальной эритемной дозы) при освещенности 300-500 лк. Эритемные лампы в системе общего освещения обеспечивают 0,25-0,75 МЭД в день и используются лишь в осенне-зимний период года. Суммарная годовая доза УФИ как от эритемных, так и от полифункциональных ламп составляет около 65 МЭД.

Гигиеническая оценка светооблучательных установок показала их благотворное влияние на работоспособность, а также отсутствие неблагоприятного влияния УФИ на зрительные функции человека и на среду в помещении.

Обогащение искусственного света УФИ рекомендуется прежде всего в районах с выраженным дефицитом естественного УФИ (севернее 57,5° северной широты, а также в промышленных городах с загрязненным атмосферным воздухом, расположенных в зоне 57,5-42,5° северной широты) и на подземных объектах, в зданиях без естественного света и с выраженным дефицитом естественного света (при к.е.о. менее 0,5%) вне зависимости от их территориального размещения.

Обеспечение полноценной световой среды в жилых помещениях. Стремительно растущая урбанизация изменяет интенсивность и спектральный состав солнечной радиации у поверхности земли - вследствие загрязнения атмосферного воздуха, снижающего его прозрачность, и существенного затенения территории плотной многоэтажной застройкой. Ограниченная прозрачность остекления светопроемов, их, а зачастую несоответствие размеров площади окон глубине помещений вызывают повышенный дефицит естественного света в помещениях. Недостаток естественного света ухудшает условия зрительной работы и создает предпосылки для развития у городского населения синдрома "солнечного (или светового) голодания", икающего устойчивость организма к воздействию факторов химической, физической и бактерийной природы, а по последним данным и к стрессовым ситуациям. Поэтому дефицит естественного света и световой среды отнесены к факторам, для жизнедеятельности человека. В больших городах особое значение имеет качество среды внутри помещения, где человеку должен обеспечен не только зрительный комфорт, но и необходимый биологический эффект от освещения. Последний в основном условиями освещения помещений естественным светом, под которым понимается рассеянный свет небосвода, проникающий через светопроемы, и прямыми солнечными лучами (инсоляцией). Эти природные факторы должны присутствовать в достаточном количестве в каждом помещении, предназначенном для длительного пребывания человека, и прежде всего в помещениях жилых зданий.

Естественное освещение и инсоляция. В закрытых помещениях световая среда существенно денатурирована, а естественные оптические факторы ослаблены, так как светопроемы составляют относительно небольшую часть ограждений, пропуская около 50% падающего на них света и лишь незначительную долю ультрафиолетового излучения.

Для обеспечения полноценной световой среды в жилых зданиях действующими нормами и правилами регламентируются минимальная величина коэффициента естественной освещенности (к.е.о.), режим и длительность инсоляции.

В соответствии с требованиями СНиП 23-05-95 "Естественное и искусственное освещение. Нормы проектирования" величина к.е.о. для основных помещений жилых зданий (комнат и кухонь) в средней светоклиматической поло се установлена не ниже 04% для зон с устойчивым снежным покровом и не ниже 0,5% - для остальной территории. Снижение к.е.о. в комнатах и кухнях жилых зданий н допускается. Это требование обусловлено особой биологической значимостью естественного света в помещениях невозможностью восполнения его дефицита современным средствами искусственного освещения.

Наряду с общебиологическим влиянием естественно освещение оказывает выраженное психологическое воздействие на организм человека. Свободный зрительный с внешним миром через светопроемы достаточного изменчивость дневного освещения (колебания интенсивности, равномерности, соотношений яркости, ароматичности света на протяжении дня) оказывают большое влияние на психику человека. Поэтому с гигиенической точки зрения в зданиях разного назначения необходимо предусматривать максимально возможное использование естественного освещения. Если в помещениях, предназначенных для длительного пребывания людей, обеспечить достаточное естественное освещение невозможно, то следует упорядочить дневной режим этих людей, установив для них время периодического пребывания под открытым небом в часы с достаточным естественным освещением (например, в обеденный перерыв или путем смещения графика работы).

Большое внимание уделяется в последнее время проблеме инсоляции жилых зданий. Инсоляция - это важный гигиенический фактор, она обеспечивает поступление в помещение дополнительной световой энергии, тепла и ультрафиолетового излучения Солнца, влияет на самочувствие и настроение человека, микроклимат жилища и снижение его обсемененности микроорганизмами. Опрос больших групп населения показал положительное отношение к жилых и общественных помещений у людей, проживающих как в северных и центральных, так и в южных районах Российской Федерации. Параллельно проведенное изучение психофизиологического состояния части опрошенных выявило улучшение их работоспособности, самочувствия настроения в хорошо инсолируемых помещениях. Совмещенное освещение. Дефицит естественного освещения в ряде помещений жилых и общественных даней требует комплексного решения проблемы его восполнения искусственным освещением, в частности с помою системы совмещенного освещения.

Основной гигиенический недостаток применения совмещенного освещения обусловлен разной биологической эффективностью естественного и искусственного света, катая не в полной мере учитывается при нормировании освещения.

Неблагоприятное воздействие на организм замены естественного света искусственным подтверждается и данными биологических экспериментов по изучению иммунологической реактивности животных и их устойчивости к химической нагрузке. Полученные результаты позволили показать биологическую неадекватность естественного и искусственного света одинаковой интенсивности.

Совмещенное освещение должно улучшать положение в тех помещениях, в которых по разным причинам (строительным, эксплуатационным и т. п.) не может быть обеспечено удовлетворительное дневное освещение. Во вновь проектируемых жилых зданиях следует изыскивать возможности полноценного естественного освещения.

В том случае, когда дневное освещение постоянно дополняется общим или комбинированным искусственным, большое значение имеет выбор источников света и светильников, а также их размещение в помещении. При совмещенном освещении нельзя применять лампы накаливания. Для этого целесообразно использовать люминесцентные лампы белого и дневного света, выбираемые с учетом ориентации помещения, а на крупных общественных объектах (вокзалы, спортивные залы и т. п.) - ртутные лампы высокого давления. Размещение и тип светильников должны обеспечивать автономный подсвет зоны с недостаточным естественным освещением и однонаправленность теней. Искусственное освещение помещений в жилых зданиях. Основные гигиенические требования к искусственному освещению в быту сводятся к тому, чтобы освещение интерьеров соответствовало их назначению: света было достаточно (он не должен слепить и оказывать иного неблагоприятного влияния на человека и на среду); осветительные приборы были легко управляемыми и безопасными, а их расположение способствовало функциональному зонированию жилищ; выбор источников света производится с учетом восприятия цветового решения интерьера, спектрального состава света и благоприятного биологического воздействия светового потока.

До настоящего времени в жилых помещениях целесообразным с гигиенической точки зрения считается применение светильников с лампами накаливания как более удобных в эксплуатации, легко регулируемых, бесшумных и не излучающих ультрафиолетового потока. Экономичные люминесцентные светильники рекомендуется использовать в основном для освещения вспомогательных помещений с кратковременным пребыванием людей (прихожей, ванной и т. п.). Установка их в кухнях требует применения спектрального типа ламп, точно передающего естественный вид продукта. При освещении люминесцентными светильниками, например, письменного стола, необходимо наряду с правильным подбором спектрального типа ламп устранение пульсации их светового потока.

Обогащение светового потока установок искусственного освещения ультрафиолетовые м и з л у ч е н и е м. Проблема обогащения света ультрафиолетовым излучением (УФИ) весьма актуальна в настоящее время, когда денатурация световой среды в городах и увеличение времени пребывания человека в условиях искусственного освещения требуют широкой профилактики возможного развития симптомов светового у людей, сопровождающихся снижением организма к воздействию неблагоприятных факторов и повышением заболеваемости. Наиболее удобным и эффективным приемом профилактики светового голодания использование в системе общего освещения посещений с длительным пребыванием людей установок, создающих световой поток- N УФИ. При этом может использоваться двойная система - осветительных и, излучающих УФ- по к в диапазоне длин волн 280 - 320 нм, или единая систем - с полифункциональными осветительное лампами, генерирующими одновременно видимый свет и УФИ (спектр их излучения охватывает область 280- 700 нм), которые обеспечивают получение человеком за 8 часов рабочего дня 0,125 - 0,25 МЭД (минимальной эритемной дозы) при освещенности 300 - 500 лк. Эритемные лампы в системе общего освещения обеспечивают 0,25 - 0,75 МЭД в день и используются лишь в осенне-зимний период года, Суммарная годовая доза УФИ как от эритемных, так и от полифункциональных ламп составляет около 65 МЭД.

Гигиеническая оценка светооблучательных установок показала их благотворное влияние на работоспособность, а также отсутствие неблагоприятного влияния УФИ на зрительные функции человека и на среду в помещении.

Обогащение искусственного света УФИ рекомендуется прежде всего в районах с выраженным дефицитом естественного УФИ (севернее 57,5" северной широты, а также в промышленных городах с загрязненным атмосферным воздухом, расположенных в зоне 57,5 - 42,5" северной широты) и на подземных объектах, в зданиях без естественного света и с выраженным дефицитом естественного света (при к.е.о. менее 0,5") вне зависимости от их территориального размещения.

Шумы в жилой среде: источники, влияние на организм и меры защиты. Защита городской и жилой среды от шума имеет большое гигиеническое и социально-экономическое значение, что связано с повсеместным ростом шумового загрязнения, вызывающего ухудшение состояния здоровья населения.

Существующие источники шума в условиях городской жилой среды можно подразделить на две основные группы: расположенные в свободном пространстве (вне зданий) и находящиеся внутри зданий.

Источники шума, расположенные в свободном пространстве, по своему характеру делятся на подвижные и стационарные, т. е. постоянно или долговременно установленные в каком-либо месте

Для источников шума, расположенных внутри зданий, имеют значение характер размещения источников шума по отношению к окружающим защищаемым объектам и их соответствие предъявляемым к ним требованиям. Внутренние источники шума можно подразделить на несколько групп:

Техническое оснащение зданий (лифты, трансформаторные подстанции и т. п.);

Технологическое оснащение зданий (морозильные камеры магазинов, машинное оборудование небольших мастерских и т. п.);

Санитарное оснащение зданий (водопроводные сети, смывные краны туалетов, душевые и т. п.);

Бытовые приборы (холодильники, пылесосы, миксеры, стиральные машины и др.);

Аппаратура для воспроизведения музыки, радиоприемники и телевизоры, музыкальные инструменты.

В последние годы отмечается рост шума в городах, что связано с резким увеличением движения транспорта (мобильного, рельсового, воздушного).

Транспортный шум по характеру воздействия является непостоянным внешним шумом, так как уровень звука изменяется во времени более чем на 5 дБ.

Уровень различных шумов зависит от интенсивности и состава транспортных потоков, планировочных решений (профиль улиц, высота и плотность застройки) и наличия отдельных элементов благоустройства (тип дорожного покрытия и проезжей части, зеленые насаждения). Наблюдается зависимость уровней звука на магистралях от фактических режимов движения транспорта.

Диапазон колебаний между фоновыми и максимальны и (пиковыми) уровнями звука, характеризующими шумовой режим примагистральной территории, в дневное время составляет в среднем 20 дБ.

В ночной период суток размах колебаний максимальных уровней звука относительно фона увеличивается

Системные (внеслуховые) - воздействие на отдельные системы и организм в целом (на заболеваемость, сон, психику).

Уровни коммунального шума почти всегда значительно ниже предела, установленного для рабочей зоны (85- 90 дБ). Однако имеются коммунальные шумы, максимальные значения которых достигают указанного верхнего предела (от телевизора, ударных музыкальных инструментов, мотоциклов). Снижению остроты слуха может способствовать и длительное воздействие на человека транспортного шума. Неблагоприятное воздействие на слух оказывается в тех случаях, когда человек подвергается действию шума как на производстве, так и дома.

В настоящее время лиц, обладающих "отличным" слухом, среди молодежи и взрослых намного меньше, чем 20 лет назад. Изменения в органе слуха происходят уже в период полового созревания. Причиной является насыщенная техникой жизненная среда, а у молодежи, кроме того громкая музыка.

Одной из специфических особенностей шума является его маскировочный эффект - воздействие на восприятие звуковой и в особенности речевой информации.

Под влиянием шума у людей изменяются показатели переработки информации, снижается темп и ухудшается качество выполняемой работы.

Изучение влияния шума на жителей разного пола и возраста показало, что более чувствительны к нему женщины и лица старших возрастных групп. Данные категории Населения, проживающие в шумных районах, чаще жалуется на раздражение, нарушение сна, головные боли, боли области сердца. Объективно выявлены тенденции к повышению артериального давления, изменения отдельных показателей электрокардиограммы, функциональные нарушения центральной и вегетативной нервной системы, снижение слуховой чувствительности.

Для снижения шума на жилой территории необходимо соблюдать следующие принципы: + вблизи источников шума размещать малоэтажные здания;

Строить параллельно транспортной магистрали шумозащитные объекты;

Группировать жилые объекты в удаленные или защищенные кварталы;

Здания, не требующие защиты от шума (склады, гаражи, некоторые мастерские и т. д.), использовать в качестве барьеров, ограничивающих распространение шума;

Экранирующие объекты, используемые для борьбы с шумом, должны располагаться как можно ближе к его источнику, причем большое значение имеют непрерывность таких объектов по всей длине, их высота и ширина;

Поверхность противошумовых экранов, обращенная к источнику, должна быть выполнена по возможности из звукопоглощающего материала.

В условиях плотной городской застройки и дефицита свободной территории целесообразно осуществлять строительство специальных шумозащитные (барьерных) зданий экранов (жилого и нежилого назначения), фронтально размещаемых вдоль магистралей и образующих акустическую тень за зданием. В качестве экранов для защиты от шума кроме протяженных зданий могут использоваться специальные сооружения типа стенок, выемок, насыпей, эстакад и т. п. Экраны, выполненные в виде вертикальной защитной стенки, получили применение в условиях сложившейся застройки как более компактные по сравнению с остальными типами экранов. Уровень шума в жилой среде можно снизить за счет облицовки лоджий и балконов и применения плотных (без отверстий) перил, особенно на более высоких этажах.

Гигиеническое нормирование вибрации в условиях жилища. Важнейшим направлением решения проблемы ограничения неблагоприятного воздействия вибрации в жилищных условиях является гигиеническое нормирование ее допустимых воздействий. При определении предельных значений вибрации для различных условий пребывания человека в качестве основной величины используется порог ощущения вибрации. Предельные значения даются как кратная величина этого порога ощущения. Ночью в жилых помещениях допускается только одно или четырехкратный порог ощущения, днем - двукратный.

Электромагнитные поля как неблагоприятный фактор и общественных помещений. Распространенным и постоянно возрастающим негативным фактором городской среды являются электромагнитные поля (ЭМП), создаваемые различными устройствами, генерирующими, передающими и использующими электрическую энергию. Электромагнитное загрязнение среды населенных мест стало столь существенным, что ВОЗ включила эту проблему в число наиболее актуальных для человека.

В настоящее время имеется огромное количество самых разнообразных источников электромагнитных полей, находящихся как вне жилых и общественных зданий (линии электропередач, станции спутниковой связи, радиорелейные установки, телепередающие центры, открытые распределительные устройства, электротранспорт и т. д.), так и внутри помещений (компьютеры, сотовые и радиотелефоны, пейджеры, бытовые микроволновые печи и др.).

Мощными источниками высокочастотных электромагнитных полей являются телерадиопередающие ретрансляторы, которые располагаются обычно в центре крупных городов, рядом с жилой застройкой. Передающие центры, спроектированные более двух десятков лет назад для трансляции двух телевизионных программ, сейчас транслируют от 5 до 10 программ.

На территории санитарно-защитной зоны линий электропередач (ЛЭП) нередко строятся частные дома и дачи.

Спектр электромагнитных колебаний, создаваемых линиями электропередач, радио- и телепередающими центрами, радиолокационными системами достаточно широк (табл. 7).

Спектр электромагнитных колебаний ЛЭП, радио и телепередающие устройств

Рассматривая ЭМП как важный фактор окружающей среды, необходимо отметить, что в электромагнитном поле выделяют две составляющие - электрическую и магнитную. Распространяющееся в пространстве ЭМП условно делят на две зоны: зону индукции (находится вблизи антенных устройств) и волновую зону (дальнюю), лежащую за пределами антенного поля. Поэтому в условиях населенных мест люди чаще всего могут подвергаться облучению в волновой зоне электромагнитного излучения.

Организм человека, находящегося в электромагнитном поле, поглощает его энергию, в тканях возникают высоко частотные токи с образованием теплового эффекта. Биологическое действие электромагнитного излучения зависит от длины волны, напряженности поля (или плотности потока энергии), длительности и режима воздействия (постоянный, импульсный). Чем выше мощность поля, короче длина волны и продолжительнее время облучения, тем сильнее негативное влияние ЭМП на организм.

В настоящее время нередко встречаются случаи, когда используемые в компьютерах защитные средства абсолютно неэффективны, так как или не предназначены для защиты от электромагнитных полей по своей природе, или неправильно используются. По данным ученых, более половины защитных экранов, находящихся в эксплуатации, либо вообще не ослабляют напряженность поля, либо увеличивают ее в 1,5 раза, вызывая противоположный эффект.

В этой связи весьма перспективным и обнадеживающим является использование при производстве персональных компьютеров разработанного в Российской Федерации защитного фильтра ФЗ 14-15 (" Русский щит"), предназначенного для ослабления вредных воздействий монитора и позволяющего снизить их до уровней, безопасных для человека. Технико-эксплуатационные характеристики защитного фильтра ФЗ 14-15 приведены в табл. 8

К профилактическим мероприятиям по предупреждению негативного влияния источников электромагнитных излучений относится прежде всего обеспечение соответствия их технических характеристик нормативным требованиям и строгое соблюдение правил эксплуатации. Кроме того, для более эффективной оценки степени их электромагнитной опасности для человека представляются целесообразными специальные исследования по изучению фактических значений нормируемых параметров электромагнитных полей, создаваемых различными моделями технических средств (сотовыми и радиотелефонами, пейджерами, микроволновыми печами и т. д.) в реальных условиях их использования.

  • Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    ГБОУ ВПО МО

    Академия социального управления

    Факультет управления

    РЕФЕРАТ

    по дисциплине:

    «Безопасность жизнедеятельности»

    «Физические факторы жилой среды и их влияние на человека»

    Выполнила: Студентка 1 курса ГМУ

    Ермолина Надежда

    Проверила: Рытова И.В.

    Москва 2014г

    Введение

    1.Понятие физических факторов и их значение в формировании условий жизнедеятельности человека

    2. Физические факторы жилой среды

    Заключение

    Список использованных источников

    Введение

    Жилая среда является сложным, непрерывно развивающимся объектом, природа которого естественно - искусственная. И, с течением времени, меняются требования к условиям проживания людей в жилой среде. Это связанно с большими темпами технического прогресса в наши дни и с влиянием на человека и его условия жизни многих внешних факторов и социальных условий. Эти условия тесно связанны с человеком и являются неотъемлемой частью его повседневной жизни: (структура человеческого общества, его индустрия, система транспорта, техника, вся созданная человеком искусственная среда).

    Все это непосредственно воздействует на жилую среду и условия жизни человека.

    1 .Понятие физических факторов и их значение в формировании усл овий жизнедеятельности человека

    Исследование и оценка физических воздействий (уровень шума, вибрации, электромагнитного излучения, параметров микроклимата, освещенности) должны осуществляться инструментальными методами на объекте воздействия (территория застройки, здания и сооружения и т.д.) в первую очередь при разработке градостроительной документации и проектировании жилищного строительства, а также при приемке объектов в эксплуатацию. При этом должны быть зафиксированы основные источники негативного воздействия, их интенсивность и выявлены зоны дискомфорта с превышением допустимого уровня негативного воздействия физических параметров. вибрация излучение жизнедеятельность

    Методы и исследование физических факторов воздействий весьма разнообразны как с методической точки зрения (выбор количества и расположения точек измерения, измеряемые параметры фактора, время, длительность и частота измерений и т.д.), так и с точки зрения широкого разнообразия применяемой аппаратуры. Интерпретация результатов измерений также связана с необходимостью учета ряда привходящих факторов.

    Предельно-допустимые и ориентировочно-допустимые уровни воздействия физических факторов, а также методические указания и рекомендации по их измерениям, представлены в соответствующих нормативно методических документах.

    2 . Физические факторы жилой среды

    v Свет

    Обеспечение полноценной световой среды в жилых помещениях. Стремительно растущая урбанизация изменяет интенсивность и спектральный состав солнечной радиации y поверхности Земли -- вследствие загрязнения атмосферного воздуха, снижающего его прозрачность, и существенного затенения территории плотной многоэтажной застройкой. Ограниченная прозрачность остекления светопроемов, их затеняемость, а зачастую несоответствие размеров площади окон глубине помещений вызывают повышенный дефицит естественного света в помещениях. Недостаток естественного света ухудшает условия зрительной работы и создает предпосылки для развития у городского населения синдрома "солнечного (или светового) голодания", снижающего устойчивость организма к воздействию неблагоприятных факторов химической, физической и бактериальной природы, а по последним данным -- и к стрессовым ситуациям. Поэтому дефицит естественного света и денатурация световой среды отнесены к факторам, неблагоприятным для жизнедеятельности человека.

    В больших городах особое значение имеет качество световой среды внутри помещения, где человеку должен быть обеспечен не только зрительный комфорт, но и необходимый биологический эффект от освещения. Последний определяется в основном условиями освещения помещений естественным светом, под которым понимается рассеянный свет небосвода, проникающий через светопроемы, и прямыми солнечными лучами (инсоляцией). Эти природные факторы должны присутствовать в достаточном количестве в каждом помещении, предназначенном для длительного пребывания человека, и прежде всего в помещениях жилых зданий.

    Естественное освещение и инсоляция. В закрытых помещениях световая среда существенно денатурирована, а естественные оптические факторы ослаблены, так как светопроемы составляют относительно небольшую часть ограждений, пропуская около 50% падающего на них света и лишь незначительную долю ультрафиолетового излучения.

    Для обеспечения полноценной световой среды в жилых зданиях действующими нормами и правилами регламентируются минимальная величина коэффициента естественной освещенности (к.е.о.), режим и длительность инсоляции.

    В соответствии с требованиями СНиП 23-05-95 "Естественное и искусственное освещение. Нормы проектирования" величина к.е.о. для основных помещений жилых зданий (комнат и кухонь) в средней светоклиматической полосе установлена не ниже 0,4% для зон с устойчивым снежным покровом и не ниже 0,5% -- для остальной территории. Снижение к.е.о. в комнатах и кухнях жилых зданий не допускается. Это требование обусловлено особой биологической значимостью естественного света в помещениях и невозможностью восполнения его дефицита современными средствами искусственного освещения.

    Наряду с общебиологическим влиянием естественное освещение оказывает выраженное психологическое воздействие на организм человека. Свободный зрительный контакт с внешним миром через светопроемы достаточного размера и изменчивость дневного освещения (колебания интенсивности, равномерности, соотношений яркости, хроматичности света на протяжении дня) оказывают большое влияние на психику человека. Поэтому с гигиенической точки зрения в зданиях разного назначения необходимо предусматривать максимально возможное использование естественного освещения. Если в помещениях, предназначенных для длительного пребывания людей, обеспечить достаточное естественное освещение невозможно, то следует упорядочить дневной режим этих людей, установив для них время периодического пребывания под открытым небом в часы с достаточным естественным освещением (например, в обеденный перерыв или путем смещения графика работы).

    Большое внимание уделяется в последнее время проблеме инсоляции жилых зданий. Инсоляция -- это важный гигиенический фактор, она обеспечивает поступление в помещение дополнительной световой знергии, тепла и ультрафиолетового излучения Солнца, влияет на самочувствие и настроение человека, микроклимат жилища и снижение его обсемененности микроорганизмами. Опрос больших групп населения показал положительное отношение к инсоляции жилых и общественных помещений у людей, проживающих как в северных и центральных, так и в южных районах Российской Федерации. Параллельно проведенное изучение психофизиологического состояния части опрошенных выявило улучшение их работоспособности, самочувствия и настроения в хорошо инсолируемых помещениях.

    Совмещенное освещение. Дефицит естественного освещения в ряде помещений жилых и общественных зданий требует комплексного решения проблемы его восполнения искусственным освещением, в частности с помощью системы совмещенного освещения.

    Основной гигиенический недостаток применения совмещенного освещения обусловлен разной биологической эффективностью естественного и искусственного света, которая не в полной мере учитывается при нормировании освещения.

    Неблагоприятное воздействие на организм замены естественного света искусственным подтверждается и данными биологических экспериментов по изучению иммунологической реактивности животных и их устойчивости к химической нагрузке. Полученные результаты позволили показать биологическую неадекватность естественного и искусственного света одинаковой интенсивности.

    Совмещенное освещение должно улучшать положение в тех помещениях, в которых по разным причинам (строительным, эксплуатационным и т. п.) не может быть обеспечено удовлетворительное дневное освещение. Во вновь проектируемых жилых зданиях следует изыскивать возможности полноценного естественного освещения.

    В том случае, когда дневное освещение постоянно дополняется общим или комбинированным искусственным, большое значение имеет выбор источников света и светильников, а также их размещение в помещении. При совмещенном освещении нельзя применять лампы накаливания. Для этого целесообразно использовать люминесцентные лампы белого и дневного света, выбираемые с учетом ориентации помещения, а на крупных общественных объектах (вокзалы, спортивные залы и т. п.) --- ртутные лампы высокого давления. Размещение и тип светильников должны обеспечивать автономный подсвет зоны с недостаточным естественным освещением и однонаправленность теней.

    Искусственное освещение помещений в жилых зданиях. Основные гигиенические требования к искусственному освещению в быту сводятся к тому, чтобы освещение интерьеров соответствовало их назначению: света было достаточно (он не должен слепить и оказывать иного неблагоприятного влияния на человека и на среду), осветительные приборы были легко управляемыми и безопасными, а их расположение способствовало функциональному зонированию жилищ; выбор источников света производится с учетом восприятия цветового решения интерьера, спектрального состава света и благоприятного биологического воздействия светового потока.

    До настоящего времени в жилых помещениях целесообразным с гигиенической точки зрения считается применение светильников с лампами накаливания как более удобных в эксплуатации, легко регулируемых, бесшумных и не излучающих ультрафиолетового потока. Экономичные люминесцентные светильники рекомендуется использовать в основном для освещения вспомогательных помещений с кратковременным пребыванием людей (прихожей, ванной и т. п.) Установка их в кухнях требует применения спектрального типа ламп, точно передающего естественный вид продукта. При освещении люминесцентными светильниками, например, письменного стола необходимо наряду с правильным подбором спектрального типа ламп устранение пульсации их светового потока.

    Обогащение светового потока установок искусственного освещения ультрафиолетовым излучением. Проблема обогащения искусственного света ультрафиолетовым излучением (УФИ) весьма актуальна в настоящее время, когда денатурация световой среды в городах и увеличение времени пребывания человека в условиях искусственного освещения требуют широкой профилактики возможного развития симптомов светового голодания у людей, сопровождающихся снижением резистентности организма к воздействию неблагоприятных факторов и повышением заболеваемости. Наиболее удобным и эффективным приемом профилактики светового голодания является использование в системе общего освещения помещений с длительным пребыванием людей свето-облучательных установок, создающих световой поток, обогащенный УФИ. При этом может использоваться двойная система ламп -- осветительных и эритемных, излучающих УФ-поток в диапазоне длин волн 280-320 нм, или единая система -- с полифункциональными осветительно-облучательными лампами, генерирующими одновременно видимый свет и УФИ (спектр их излучения охватывает область 280-700 нм), которые обеспечивают получение человеком за 8 часов рабочего дня 0,125-0,25 МЭД (минимальной эритемной дозы) при освещенности 300-500 лк. Эритемные лампы в системе общего освещения обеспечивают 0,25-0,75 МЭД в день и используются лишь в осенне-зимний период года. Суммарная годовая доза УФИ как от эритемных, так и от полифункциональных ламп составляет около 65 МЭД.

    Гигиеническая оценка светооблучательных установок показала их благотворное влияние на работоспособность, а также отсутствие неблагоприятного влияния УФИ на зрительные функции человека и на среду в помещении.

    Обогащение искусственного света УФИ рекомендуется прежде всего в районах с выраженным дефицитом естественного УФИ (севернее 57,5° северной широты, а также в промышленных городах с загрязненным атмосферным воздухом, расположенных в зоне 57,5-42,5° северной широты) и на подземных объектах, в зданиях без естественного света и с выраженным дефицитом естественного света (при к.е.о. менее 0,5%) вне зависимости от их территориального размещения.

    v Шум

    Шум -- беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. Шум - Совокупность апериодических звуков различной интенсивности и частоты. С физиологической точки зрения шум -- это всякий неблагоприятный воспринимаемый звук.

    Классификация шумов :

    По спектру:

    Стационарные

    Нестационарные.

    По характеру спектра шумы подразделяют на:

    Тональный шум, в спектре которого имеются выраженные тона. Выраженным тон считается если одна из третьеклассных полос частот превышает остальные не менее чем на 10 дБ.

    По частотной характеристике шумы подразделяются на:

    Низкочастотный

    Среднечастотные

    Высокочастотный

    По временным характеристикам:

    Постоянный;

    Непостоянный, который делится на колеблющийся, прерывистый и импульсный.

    По природе возникновения:

    Механический

    Аэродинамический

    Гидравлический

    Электромагнитный

    Измерение шумов

    Для количественной оценки шума используют усредненные параметры, определяемыми на основании статистических законов. Для измерения характеристик шума применяются шумомеры, частотные анализаторы, коррелометры и др. Уровень шума чаще всего измеряют в децибелах.Сила звука в децибелах.

    Разговор: 40--45

    Офис: 45--55

    Улица: 70--80

    Фабрика (тяжелая промышленность): 70--110

    Старт реактивного самолёта: 120

    Источники шума

    Существующие источники шума в условиях городской жилой среды можно подразделить на две основные группы: расположенные в свободном пространстве (вне зданий) и находящиеся внутри зданий.

    Источники шума, расположенные в свободном пространстве, по своему характеру делятся на подвижные и стационарные, т. е. постоянно или долговременно установленные в каком-либо месте.

    Для источников шума, расположенных внутри зданий, имеют значение характер размещения источников шума по отношению к окружающим защищаемым объектам и их соответствие предъявляемым к ним требованиям. Внутренние источники шума можно подразделить на несколько групп:

    * техническое оснащение зданий (лифты, трансформаторные подстанции и т. п.);

    * технологическое оснащение зданий (морозильные камеры магазинов, машинное оборудование небольших мастерских и т. п.);

    * санитарное оснащение зданий (водопроводные сети, смывные краны туалетов, душевые и т. п.);

    * бытовые приборы (холодильники, пылесосы, миксеры, стиральные машины и др.);

    * аппаратура для воспроизведения музыки, радиоприемники и телевизоры, музыкальные инструменты.

    Неакустические шумы

    Радиоэлектронные шумы -- случайные колебания токов и напряжений в радиоэлектронных устройствах, возникают в результате неравномерной эмиссии электронов в электровакуумных приборах (дробовой шум, фликкер-шум), неравномерности процессов генерации и рекомбинации носителей заряда (электронов проводимости и дырок) в полупроводниковых приборах, теплового движения носителей тока в проводниках (тепловой шум), теплового излучения Земли и земной атмосферы, а также планет, Солнца, звёзд, межзвёздной среды и т. д. (шумы космоса).

    Воздействие шума на человека

    Шум звукового диапазона приводит к снижению внимания и увеличению ошибок при выполнение различных видов работ. Шум замедляет реакцию человека на поступающие от технических устройств сигналы. Шум угнетает центральную нервную систему (ЦНС), вызывает изменения скорости дыхания и пульса, способствует нарушению обмена веществ, возникновению сердечно-сосудистых заболеваний, язвы желудка, гипертонической болезни.

    Воздействия шума на человека можно условно подразделить:

    * на специфические (слуховые) -- воздействие на слуховой анализатор, которое выражается в слуховом утомлении, кратковременной или постоянной потере слуха, расстройствах четкости речи и восприятия акустических сигналов;

    * на системные (внеслуховые) -- воздействие на отдельные системы и организм в целом (на заболеваемость, сон, психику).

    Гигиеническое нормирование шума

    Для определения допустимого уровня шума на рабочих местах, в жилых помещениях, общественных зданиях и территории жилой застройки используется ГОСТ 12.1.003-88. ССБТ «Шум. Общие требования безопасности».

    Уровни коммунального шума почти всегда значительно ниже предела, установленного для рабочей зоны (85-90 дБ). Однако имеются коммунальные шумы, максимальные значения которых достигают указанного верхнего предела (от телевизора, ударных музыкальных инструментов, мотоциклов). Снижению остроты слуха может способствовать и длительное воздействие на человека транспортного шума. Неблагоприятное воздействие на слух оказывается в тех случаях, когда человек подвергается действию шума как на производстве, так и дома.

    В настоящее время лиц, обладающих "отличным" слухом, среди молодежи и взрослых намного меньше, чем 20 лет назад. Изменения в органе слуха происходят уже в период полового созревания, причиной чего является насыщенная техникой жизненная среда, а у молодежи, кроме того, громкая музыка.

    Защита от шума

    В качестве экранов для защиты от шума кроме протяженных зданий могут использоваться специальные сооружения типа стенок, выемок, насыпей, эстакад и т. п. Экраны, выполненные в виде вертикальной защитной стенки, получили применение в условиях сложившейся застройки как более компактные по сравнению с остальными типами экранов.

    Уровень шума в жилой среде можно снизить за счет звукопоглощающей облицовки лоджий и балконов и применения плотных (без отверстий) перил, особенно на более высоких этажах.

    Транспортный шум уменьшают (до 25 дБ) типовые конструкции окон с повышенной звукоизоляцией за счет увеличения толщины стекол и воздушного пространства между ними, тройного остекления, уплотнения притворов, использования звукопоглощающей прокладки по периметру оконных рам.

    Разработаны и внедрены в практику специальные конструкции оконных блоков с устройством вентиляционных клапанов-глушителей ("шумозащитное окно"), обеспечивающих естественную вентиляцию помещений при одновременном снижении транспортного шума.

    v Вибрация

    Вибрация в условиях жилищ, ее влияние на организм человека. Вибрация как фактор среды обитания человека наряду с шумом относится к одному из видов ее физического загрязнения, способствующего ухудшению условий проживания городского населения.

    Вибрация, воздействуя на живой организм, трансформируется в энергию биохимических и биоэлектрических процессов, формируя ответную реакцию организма.

    При длительном проживании людей в зоне воздействия вибрации от транспортных источников, уровень которой превышает нормативную величину, отмечается ее неблагоприятное влияние на самочувствие, функциональное состояние центральной нервной и сердечно-сосудистой систем, повышение уровня неспецифической заболеваемости.

    Колебания в зданиях могут генерировать внешние источники (подземный и наземный транспорт, промышленные предприятия).

    Вибрация в квартире часто вызвана эксплуатацией лифта. В некоторых случаях ощутимая вибрация наблюдается при строительных работах, проводимых вблизи жилых зданий (забивка свай, демонтаж и ломка зданий, дорожные работы).

    Источником повышенной вибрации в жилых домах могут служить промышленные предприятия.

    Проблема борьбы с вибрацией в жилых зданиях приобрела особую актуальность в связи с развитием в крупных городах метрополитенов, строительство которых осуществляется способом мелкого заложения. Линии метрополитена прокладывают под существующими жилыми районами, а опыт эксплуатации подземных поездов показал, что интенсивные вибрации проникают в близлежащие жилые здания в радиусе до 40-70 м по обе стороны от тоннеля метрополитена и вызывают серьезные жалобы населения.

    Изучение распространения вибрации по этажам здания показало, что в пятиэтажных домах уровни виброускорения снижаются в направлении от первого до пятого этажа на частотах 8--32 Гц на 4~6 дБ. В многоэтажных зданиях отмечается как уменьшение величин колебаний на более высоких этажах, так и увеличение их из-за резонансных явлений.

    Интенсивность вибрации в жилых домах зависит от расстояния до источника. В радиусе до 10 м превышение уровня вибрации над фоновыми значениями в октавных полосах частот 31,5 и 63 Гц в среднем составляет 20 дБ, в октавной полосе 16 Гц уровни вибрации от поездов превышают фон на 2 дБ, а в низкочастотном диапазоне соизмеримы с ним. С увеличением расстояния до 40 м уровни вибрации снижаются до 27-23 дБ соответственно частотам 31,5 и 63 Гц, а на расстоянии свыше 50 м от тоннеля уровни виброускорения не выходят за пределы колебания фона.

    Таким образом, источники вибрации в жилых помещениях различают по интенсивности, временным параметрам, характеру спектровибрации, что и определяет различную степень выраженности реакции жителей на их воздействие.

    Влияние вибрации на организм человека. Вибрация в условиях жилой среды может действовать круглосуточно, вызывая раздражение, нарушая отдых и сон человека.

    В отличие от звука вибрация воспринимается различными органами и частями тела. Низкочастотные поступательные вибрации воспринимаются отолитовым аппаратом внутреннего уха. В ряде случаев реакция людей определяется не столько восприятием самих механических колебаний, сколько вторичными зрительными и слуховыми эффектами (например, дребезжание посуды в шкафу, хлопанье дверей, раскачивание люстры и т. д.).

    Субъективное восприятие вибрации зависит не только от ее параметров, но и от множества других факторов: состояния здоровья, тренированности организма, индивидуальной переносимости, эмоциональной устойчивости, нервно-психического статуса субъекта, подвергаемого действию вибрации. Имеет значение также способ передачи вибрации, длительность экспозиции и пауз.

    В квартирах ощутимые вибрации почти всегда воспринимаются как посторонние и необычные и поэтому их можно считать мешающими. Зрительные и слуховые воздействия усугубляют их неблагоприятное влияние.

    На восприятие вибрации может существенно влиять деятельность субъекта. При этом вибрация, мешающая человеку при спокойной сидячей работе, совсем не будет восприниматься человеком, который во время работы переходит с места на место. Таким образом, можно полагать: чем спокойнее работа, тем интенсивнее человек воспринимает вибрацию.

    Мерой оценки восприятия вибрации служит понятие "сила восприятия", которое является связующим звеном между величинами колебаний, их частотой и направлением, с одной стороны, и восприятием вибрации -- с другой.

    Различают три степени реакции человека на вибрацию: восприятие сидящим человеком синусоидальных вертикальных колебаний; неприятные ощущения; предел добровольно переносимой вибрации в течение 5-20 минут.

    Сила восприятия механических колебаний, воздействующих на человека, зависит в значительной степени от биомеханической реакции тела человека, представляющего собой в известной мере механическую колебательную систему.

    Особое внимание при этом уделяется изучению явления резонанса как всего тела человека, так и отдельных его органов и систем. Установлено, что при частоте воздействующей вибрации свыше 2 Гц человек ведет себя как целостная масса; для сидящего человека резонанс тела находится в интервале от 4 до 6 Гц. Другая полоса резонансных частот лежит в области 17-30 Гц и вызывается в системе "голова-шея-плечо". В этом диапазоне амплитуда колебания головы может втрое превышать амплитуду колебания плеч.

    Таким образом, тело человека представляет сложную колебательную систему, обладающую собственным резонансом, что и определяет строгую частотную зависимость многих биологических эффектов вибрации.

    Степень раздражающего действия вибрации зависит от ее уровня (или расстояния до источника колебаний). Наибольшие уровни вибрации, зарегистрированные в радиусе до 20 м от источника, вызывают негативную реакцию у 73% жителей. С возрастанием зоны разрыва количество жалоб уменьшается, и на расстоянии 35--40 м колебания ощущают 17% жителей. Дальнейшее увеличение расстояния в связи с уменьшением амплитуды колебаний не влияет на восприятие жителями вибрации, что позволило установить 40-метровую допустимую зону разрыва между жилой застройкой и тоннелями метрополитена мелкого заложения.

    Наибольшее количество жалоб (65%) предъявляют лица в возрасте от 31 до 40 лет.

    Нетерпимы к вибрационному воздействию лица с неудовлетворительным состоянием здоровья, заболеваниями сердечно-сосудистой и нервной систем. Количество жалоб в этой группе в 1,5 раза больше, чем в группе здоровых людей.

    Гигиеническое нормирование вибрации в условиях жилища. Важнейшим направлением решения проблемы ограничения неблагоприятного воздействия вибрации в жилищных условиях является гигиеническое нормирование ее допустимых воздействий. При определении предельных значений вибрации для различных условий пребывания человека в качестве основной величины используется порог ощущения вибрации. Предельные значения даются как кратная величина этого порога ощущения. Ночью в жилых помещениях допускается только одно- или четырехкратный порог ощущения, днем -- двукратный.

    v ЭМП. Электромагнитные излучения

    Электромагнитное излуче ние (электромагнитные волны) -- распространяющееся в пространстве возмущение электромагнитного поля (т.е. иначе говоря - взаимодействующи К электромагнитному излучению относятся радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и жесткое (гамма-)излучение (см. ниже, см. также рисунок).Электромагнитное излучение способно распространяться в вакууме (пространстве, свободном от вещества), но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение). х друг с другом электрического и магнитного полей).

    Источники

    В настоящее время имеется огромное количество самых разнообразных источников электромагнитных полей, находящихся как вне жилых и общественных зданий (линии электропередач, станции спутниковой связи, радиорелейные установки, телепередающие центры, открытые распределительные устройства, электротранспорт и т. д.), так и внутри помещений (компьютеры, сотовые и радиотелефоны, пейджеры, бытовые микроволновые печи и др.).

    Рассматривая ЭМП как важный фактор окружающей среды, необходимо отметить, что в электромагнитном поле выделяют две составляющие -- электрическую и магнитную. Распространяющееся в пространстве ЭМП условно делят на две зоны: зону индукции (находится вблизи антенных устройств) и волновую зону (дальнюю), лежащую за пределами антенного поля. Поэтому в условиях населенных мест люди чаще всего могут подвергаться облучению в волновой зоне электромагнитного излучения.

    Реакция организма человека на ЭМП

    Организм человека, находящегося в электромагнитном поле, поглощает его энергию, в тканях возникают высокочастотные токи с образованием теплового эффекта. Биологическое действие электромагнитного излучения зависит от длины волны, напряженности поля (или плотности потока энергии), длительности и режима воздействия (постоянный, импульсный). Чем выше мощность поля, короче длина волны и продолжительнее время облучения, тем сильнее негативное влияние ЭМП на организм. При воздействии на человека малоинтенсивного электромагнитного поля возникают нарушения электрофизиологических процессов в центральной нервной и сердечно-сосудистой системах, функций щитовидной железы, системы "гипофиз -- кора надпочечников", генеративной функции организма.

    Гигиенические нормы

    Для предотвращения неблагоприятного влияния ЭМП на население установлены предельно допустимые уровни (ПДУ) напряженности электромагнитного поля, кВ/м:

    * внутри жилых зданий -- 0,5;

    * на территории зоны жилой застройки -- 1,0;

    * в населенной местности вне зоны жилой застройки -- 10;

    * в ненаселенной местности (часто посещаемой людьми) -- 15;

    * в труднодоступной местности (недоступной для транспорта и сельскохозяйственных машин) -- 20.

    v Ионизирующее излучение

    Ионизирующее излучение - это любое излучение, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков.

    При ядерном взрыве, авариях на АЭС и других ядерных превращениях появляются и действуют не видимые и не ощущаемые человеком излучения. По своей природе ядерное излучение может быть электромагнитным, как например, гамма-излучение, или представлять поток быстро движущихся элементарных частиц - нейтронов, протонов, бета и альфа-частиц. Любые ядерные излучения, взаимодействуя с различными материалами, ионизируют их атомы и молекулы. Ионизация среды тем сильнее, чем больше мощность дозы проникающей радиации или радиоактивность излучения и длительное их воздействие.

    Действие ионизирующих излучений на людей и животных заключается в разрушении живых клеток организма, которое может привести к различной степени заболеваниям, а в некоторых случаях и к смерти. Чтобы оценить влияние ионизирующих излучений на человека (животное), надо учитывать две основных характеристики: ионизирующую и проникающую способности.

    Рассматривая ионизирующую и проникающую способность, можно сделать вывод. Альфа-излучение обладает высокой ионизирующей и слабой проникающей способностью. Обыкновенная одежда полностью защищает человека. Самым опасным является попадание альфа-частиц во внутрь организма с воздухом, водой и пищей. Бета-излучение имеет меньшую ионизационную способность, чем альфа-излучение, но большую проникающую способность. Одежда уже не может полностью защитить, нужно использовать любое укрытие. Это будет намного надежней. Гамма- и нейтронное излучение обладают очень высокой проникающей способностью, защиту от них могут обеспечить только убежища, противорадиационные укрытия, надежные подвалы и погреба.

    Бытовые дозиметры

    В результате аварии в Чернобыле радионуклиды выпали на огромной площади. Чтобы решить проблему информированности населения, Национальная комиссия по радиационной защите (НКРЗ) разработала «Концепцию создания и функционирования системы радиационного контроля, осуществляемого населением». В соответствии с ней люди должны иметь возможность самостоятельно оценивать радиационную обстановку в месте проживания или нахождения, включая и оценку радиоактивного загрязнения продуктов питания и кормов.

    Для этого промышленность выпускает простые, портативные и дешевые приборы - индикаторы, обеспечивающие, как минимум, оценку мощности до зы внешнего излучения от фоновых значений и индикацию допустимого уровня мощности дозы гамма-излучения.

    Многочисленные приборы, которыми пользуется население (термометры, барометры, тестеры), измеряют микровеличины (температуру, давление, напряжение, силу тока). Дозиметрические же приборы фиксируют микровеличины, то есть процессы, происходящие на уровне ядра (количество распадов ядер, потоки отдельных частиц и квантов) Поэтому для многих непривычны сами единицы измерения, с которыми они сталкиваются. Более того, единичные измерения не дают точных показаний. Необходимо проводить несколько измерений и определять среднее значение. Затем все измеренные величины надо сопоставить с нормативами, чтобы правильно определить результат и вероятность воздействия на организм человека.

    Генетический эффект - воздействие на потомство.

    Различные органы живого организма имеют свою чувствительность к облучению.Не каждый организм (человек) в целом одинаково реагирует на облучение.

    Облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.

    Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь ИИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.

    Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.

    Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно отмирание тканей (некрозы).

    Смертельные поглощённые дозы для отдельных частей тела следующие:

    голова - 20 Гр;

    нижняя часть живота - 50 Гр;

    грудная клетка -100 Гр;

    конечности - 200 Гр.

    При облучении дозами, в 100-1000 раз превышающую смертельную дозу, человек может погибнуть во время облучения ("смерть под лучом").

    Защита от ионизирующих излучений

    От альфа-лучей можно защититься путём:

    увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;

    использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

    В качестве защиты от бета-излучения используют:

    ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;

    методы и способы, исключающие попадание источников бета-излучения внутрь организма.

    Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

    увеличение расстояния до источника излучения;

    сокращение времени пребывания в опасной зоне;

    экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);

    использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;

    использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;

    дозиметрический контроль внешней среды и продуктов питания.

    v Радон

    Радон -- элемент главной подгруппы восьмой группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 86. Обозначается символом Rn (Radon). Простое вещество радон в нормальных условиях -- бесцветный инертный газ; радиоактивен, может представлять опасность для здоровья и жизни. При комнатной температуре является одним из самых тяжелых газов. Наиболее стабильный изотоп (222Rn) имеет период полураспада 3,8 суток.

    Нахождение радона в природе

    Концентрация радона в воздухе зависит в первую очередь от геологической обстановки (так, граниты, в которых много урана, являются активными источниками радона, в то же время над поверхностью морей радона мало), а также от погоды (во время дождя микротрещины, по которым радон поступает из почвы, заполняются водой; снежный покров также препятствует доступу радона в воздух). Перед землетрясениями наблюдалось повышение концентрации радона в воздухе, вероятно, благодаря более активному обмену воздуха в грунте ввиду роста микросейсмической активности.

    В дом радон может попасть разными путями:

    Из недр Земли; из стен и фундамента зданий, т.к. строительные материалы (цемент, щебень, кирпич, шлакоблоки) в разной степени, в зависимости от качества, содержат дозу радиоактивных элементов; вместе с водопроводной водой и природным газом. Так как этот газ тяжелее воздуха, он оседает и концентрируется в нижних этажах и подвалах.

    Самый значимый путь накопления радона в помещениях связан с выделением радона из почвы, на которой стоит здание.

    Большую опасность представляет поступление радона с водяными парами при пользовании душем, ванной, парной.

    Он содержится и в природном газе, и поэтому на кухне необходимо устанавливать вытяжку, чтобы предотвратить накапливание и распространение радона.

    Применение радона

    Радон используют в медицине для приготовления радоновых ванн. Радон используется в сельском хозяйстве для активации кормов домашних животных, в металлургии в качестве индикатора при определении скорости газовых потоков в доменных печах, газопроводах. В геологии измерение содержания радона в воздухе и воде применяется для поиска месторождений урана и тория, в гидрологии -- для исследования взаимодействия грунтовых и речных вод. Динамика концентрации радона в подземных водах может применяться для прогноза землетрясений.

    Влияние радона на живые организмы

    Лишь недавно ученые выяснили, что наибольший вклад в радиоактивное облучение человека вносит именно радон. Он ответствен за 3/4 годовой дозы облучения, получаемой людьми от земных источников радиации и примерно за половину этой дозы от всех природных источников. Установлено, что основная часть облучения происходит от дочерних продуктов распада радона - изотопов свинца, висмута и полония.

    Продукты распада радона попадают в легкие человека вместе с воздухом и задерживаются в них. Распадаясь, выделяют альфа-частицы, поражающие клетки эпителия. Распад ядер радона в легочной ткани вызывает микроожоги, а повышенная концентрация газа в воздухе может привести к раку. Также альфа-частицы вызывают повреждения в хромосомах клеток костного мозга человека, что увеличивает вероятность развития лейкозов.

    К сожалению, наиболее уязвимы для радона самые важные клетки - половые, кроветворные и иммунные. Частицы ионизирующей радиации повреждают наследственный код и, притаившись, никак себя не проявляют, до тех пор, пока «больной» клетке не настанет время делиться или создавать новый организм - ребенка. Тогда речь может идти о мутации клеток, приводящей к сбоям в жизнедеятельности человека.

    Заключение

    Исследование и оценка всех физических воздействийдолжны осуществляться инструментальными методами на объекте воздействия (территория застройки, здания и сооружения и т.д.) в первую очередь при разработке градостроительной документации и проектировании жилищного строительства, а также при приемке объектов в эксплуатацию. При этом должны быть зафиксированы основные источники негативного воздействия, их интенсивность и выявлены зоны дискомфорта с превышением допустимого уровня негативного воздействия физических параметров.

    Это необходимо делать для обеспечения безопасного проживания человека в жилой среде.

    Сп исок использованных источников

    1. Арустамов Э.А. Безопасность жизнедеятельности. - М.: 2001.-324

    2. Давыдов И. И. Биологическое действие, нормирование и защита от электромагнитных излучений // И. И. Давыдов. -- 1984.

    4. Исследования в области измерений ионизирующих излучений. Под редакцией М.Ф. Юдина, Ленинград, 1985.

    5. Кирикова О. В. Защита от электромагнитных полей, 1992.

    7. Радиация. Дозы, эффекты, риск: Пер. с англ.- М.: Мир,-79c., ил.

    8. Санитарные нормы СН 2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых и общественных зданий и на территории жилой застройки», утв. постановлением Госкомсанэпиднадзора РФ от 31 октября 1996 г. N 36

    9. Шандала М. Г. Справочник по электромагнитной безопасности работающих и населения / М. Г. Шандала, В. Г. Зуев, И. Б. Ушаков и др. -- Воронеж: Истоки, 1998.

    Размещено на Allbest.ru

    Подобные документы

      Особенности и виды воздействия шума и вибрации, обоснование нормирования их показателей и величины. Средства измерения уровня шума и вибрации, их специфическое и неспецифическое действие. Разработка мероприятий по защите в производственных условиях.

      магистерская работа , добавлен 16.09.2017

      Основные понятия гигиены и экологии труда. Сущность шума и вибраций, влияние шума на организм человека. Допустимые уровни шума для населения, методы и средства защиты. Действие производственной вибрации на организм человека, методы и средства защиты.

      реферат , добавлен 12.11.2010

      Электромагнитное поле и его характеристики. Источники электромагнитного излучения, механизм его воздействия и основные последствия. Влияние современных электронных устройств и электромагнитных лучей, исходящих от сотовых телефонов, на организм человека.

      реферат , добавлен 02.02.2010

      Действие шума, ультразвука и инфразвука на организм человека. Характеристики, нормирование, методы контроля вибрации. Методы защиты от негативного воздействия шума на человека. Электромагнитные поля и излучения радиочастотного и оптического диапазона.

      контрольная работа , добавлен 06.07.2015

      Влияние параметров микроклимата на самочувствие человека. Гигиеническое нормирование параметров микроклимата. Средства обеспечения надлежащей чистоты и допустимых параметров микроклимата рабочей зоны. Требования к освещению помещений и рабочих мест.

      презентация , добавлен 24.06.2015

      Общие положения и характеристики физико-химических условий на рабочем месте водителя. Влияние на организм человека физических характеристик – шума и вибрации; их источники в салоне автомобиля, меры снижения. Показатели и оценка комфортного микроклимата.

      реферат , добавлен 17.09.2010

      Обеспечение комфортных условий жизнедеятельности: правила и нормы искусственного освещения, защита от вибрации, шума. Воздействие негативных факторов ионизирующего излучения на человека и среду обитания. Эксплуатация установок повышенной опасности.

      контрольная работа , добавлен 27.06.2010

      Параметры микроклимата и их измерение. Терморегуляция организма человека. Влияние параметров микроклимата на самочувствие человека. Гигиеническое нормирование параметров микроклимата. Обеспечение в помещениях нормальных метеорологических условий.

      контрольная работа , добавлен 23.06.2013

      Реальная угроза нанесения непоправимого вреда человеческому организму от электромагнитного излучения, основные источники ЭМП и характер влияния на отдельные системы человека. Методы и средства защиты человека от вредного электромагнитного воздействия.

      научная работа , добавлен 10.05.2010

      Основные факторы внешней среды, влияющие на жизнедеятельность человека. Социальные и психические факторы внешней среды. Эволюция среды обитания человека. Состояния взаимодействия человека и техносферы, характерные для жизнедеятельности человека.

    Ионный режим помещений оценивают при помощи аспирационного счетчика ионов, который определяет концентрацию легких и тяжелых, положительно и отрицательно заряженных ионов.

    Помещений в общественных зданиях

    Нормативные величины ионизации воздушной среды

    Обеспечение полноценной световой среды в жилых по­мещениях. Стремительно растущая урбанизация изменяет интенсивность и спектральный состав солнечной радиации у поверхности Земли - вследствие загрязнения атмосферного воздуха, снижающего его прозрачность, и существенного зате­нения территории плотной многоэтажной застройкой. Ограни­ченная прозрачность остекления светопроемов, их затеняемость, а зачастую несоответствие размеров площади окон глубине помещений вызывают повышенный дефицит естественного света в помещениях. Недостаток естественного света ухудшает условия зрительной работы и создает предпосылки для развития у городского населения синдрома "солнечного (или светового) голодания", снижающего устойчивость организма к воздействию неблагоприятных факторов химической, физической и бакте­риальной природы, а по последним данным - и к стрессовым ситуациям. Поэтому дефицит естественного света и денатурация световой среды отнесены к факторам, неблагоприятным для жизнедеятельности человека.

    В больших городах особое значение имеет качество световой среды внутри помещения, где человеку должен быть обеспечен не только зрительный комфорт, но и необходимый биологический эффект от освещения. Последний определяется в основном усло­виями освещения помещений естественным светом, под которым понимается рассеянный свет небосвода, проникающий через светопроемы, и прямыми солнечными лучами (инсоляцией). Эти природные факторы должны присутствовать в достаточном ко­личестве в каждом помещении, предназначенном для длительного пребывания человека, и прежде всего в помещениях жилых зданий. Естественное освещение и инсоляция. В закрытых поме­щениях световая среда существенно денатурирована, а есте­ственные оптические факторы ослаблены, так как светопроемы составляют относительно небольшую часть ограждений, пропу­ская около 50% падающего на них света и лишь незначительную долю ультрафиолетового излучения.

    Для обеспечения полноценной световой среды в жилых зда­ниях действующими нормами и правилами регламентируются минимальная величина коэффициента естественной освещен­ности (КЕО), режим и длительность инсоляции.

    В соответствии с требованиями СНиП 23-05-2010 "Есте­ственное и искусственное освещение. Нормы проектирования" величина коэффициента естественной освещенности (КЕО) для основных помещений жилых зданий (комнат и кухонь) в средней светоклиматической полосе установлена не ниже 0,4% для зон с устойчивым снежным покровом и не ниже 0,5% - для остальной территории. Снижение КЕО в комнатах и кухнях жи­лых зданий не допускается. Это требование обусловлено особой биологической значимостью естественного света в помещениях и невозможностью восполнения его дефицита современными средствами искусственного освещения.



    Наряду с общебиологическим влиянием естественное осве­щение оказывает выраженное психологическое воздействие на организм человека. Свободный зрительный контакт с внешним миром через светопроемы достаточного размера и изменчивость дневного освещения (колебания интенсивности, равномерности, соотношений яркости, хроматичности света на протяжении дня) оказывают большое влияние на психику человека. Поэтому с ги­гиенической точки зрения в зданиях разного назначения необхо­димо предусматривать максимально возможное использование естественного освещения. Если в помещениях, предназначенных для длительного пребывания людей, обеспечить достаточное естественное освещение невозможно, то следует упорядочить дневной режим этих людей, установив для них время периоди­ческого пребывания под открытым небом в часы с достаточным естественным освещением (например, в обеденный перерыв или путем смещения графика работы).

    Большое внимание уделяется в последнее время проблеме инсоляции жилых зданий. Инсоляция - это важный гигиени­ческий фактор, она обеспечивает поступление в помещение дополнительной световой энергии, тепла и ультрафиолетового излучения Солнца, влияет на самочувствие и настроение че­ловека, микроклимат жилища и снижение его обсемененности микроорганизмами. Опрос больших групп населения показал положительное отношение к инсоляции жилых и обществен­ных помещений у людей, проживающих как в северных и центральных, так и в южных районах Российской Федерации. Параллельно проведенное изучение психофизиологического состояния части опрошенных выявило улучшение их работос­пособности, самочувствия и настроения в хорошо инсолируемых помещениях.

    Совмещенное освещение. Дефицит естественного освещения в ряде помещений жилых и общественных зданий требует ком­плексного решения проблемы его восполнения искусственным освещением, в частности с помощью системы совмещенного освещения.

    Основной гигиенический недостаток применения совмещен­ного освещения обусловлен разной биологической эффективнос­тью естественного и искусственного света, которая не в полной мере учитывается при нормировании освещения.

    Неблагоприятное воздействие на организм замены ес­тественного света искусственным подтверждается и данными биологических экспериментов по изучению иммунологической реактивности животных и их устойчивости к химической на­грузке. Полученные результаты позволили показать биологи­ческую неадекватность естественного и искусственного света одинаковой интенсивности.

    Совмещенное освещение должно улучшать положение в тех помещениях, в которых по разным причинам (строительным, эксплуатационным и т. п.) не может быть обеспечено удовлетво­рительное дневное освещение. Во вновь проектируемых жилых зданиях следует изыскивать возможности полноценного естес­твенного освещения.

    В том случае, когда дневное освещение постоянно допол­няется общим или комбинированным искусственным, большое значение имеет выбор источников света и светильников, а так­же их размещение в помещении. При совмещенном освещении нельзя применять лампы накаливания. Для этого целесообразно использовать люминесцентные лампы белого и дневного света, выбираемые с учетом ориентации помещения, а на крупных об­щественных объектах (вокзалы, спортивные залы и т. п.) - ртут­ные лампы высокого давления. Размещение и тип светильников должны обеспечивать автономный подсвет зоны с недостаточным естественным освещением и однонаправленность теней.

    Искусственное освещение помещений в жилых зданиях. Основные гигиенические требования к искусственному осве­щению в быту сводятся к тому, чтобы освещение интерьеров соответствовало их назначению: света было достаточно (он не должен слепить и оказывать иного неблагоприятного влияния на человека и на среду); осветительные приборы были легко уп­равляемыми и безопасными, а их расположение способствовало функциональному зонированию жилищ; выбор источников света производится с учетом восприятия цветового решения интерье­ра, спектрального состава света и благоприятного биологического воздействия светового потока.

    До настоящего времени в жилых помещениях целесооб­разным с гигиенической точки зрения считается применение светильников с лампами накаливания как более удобных в эксплуатации, легко регулируемых, бесшумных и не излуча­ющих ультрафиолетового потока. Экономичные люминесцент­ные светильники рекомендуется использовать в основном для освещения вспомогательных помещений с кратковременным пребыванием людей (прихожей, ванной и т. п.). Установка их в кухнях требует применения спектрального типа ламп, точно передающего естественный вид продукта. При освещении лю­минесцентными светильниками, например, письменного стола необходимо наряду с правильным подбором спектрального типа ламп устранение пульсации их светового потока.

    Обогащение светового потока установок искусственного освещения ультрафиолетовым излучением. Проблема обога­щения искусственного света ультрафиолетовым излучением (УФИ) весьма актуальна в настоящее время, когда денатурация световой среды в городах и увеличение времени пребывания человека в условиях искусственного освещения требуют широ­кой профилактики возможного развития симптомов светового голодания у людей, сопровождающихся снижением резистентности организма к воздействию неблагоприятных факторов и повышением заболеваемости. Наиболее удобным и эффективным приемом профилактики светового голодания является исполь­зование в системе общего освещения помещений с длительным пребыванием людей светооблучательных установок, создающих световой поток, обогащенный УФИ. При этом может использо­ваться двойная система ламп - осветительных и эритемных, излучающих УФ-поток в диапазоне длин волн 280-320 нм, или единая система - с полифункциональными осветительно-облучательными лампами, генерирующими одновременно видимый свет и УФИ (спектр их излучения охватывает область 280-700 нм), которые обеспечивают получение человеком за 8 часов рабо­чего дня 0,125-0,25 МЭД (минимальной эритемной дозы) при освещенности 300-500 лк. Эритемные лампы в системе общего освещения обеспечивают 0,25-0,75 МЭД в день и используются лишь в осенне-зимний период года. Суммарная годовая доза УФИ как от эритемных, так и от полифункциональных ламп составляет около 65 МЭД.

    Гигиеническая оценка светооблучательных установок по­казала их благотворное влияние на работоспособность, а также отсутствие неблагоприятного влияния УФИ на зрительные функции человека и на среду в помещении.

    Обогащение искусственного света УФИ рекомендуется пре­жде всего в районах с выраженным дефицитом естественного УФИ (севернее 57,5° северной широты, а также в промышленных городах с загрязненным атмосферным воздухом, расположенных в зоне 57,5-42,5° северной широты) и на подземных объектах, в зданиях без естественного света и с выраженным дефицитом естественного света (при КЕО менее 0,5%) вне зависимости от их территориального размещения.

    Шумы в жилой среде: источники, влияние на организм и меры защиты. Защита городской и жилой среды от шума имеет большое гигиеническое и социально-экономическое значение, что связано с повсеместным ростом шумового загрязнения, вы­зывающего ухудшение состояния здоровья населения.

    Существующие источники шума в условиях городской жилой среды можно подразделить на две основные группы: расположенные в свободном пространстве (вне зданий) и нахо­дящиеся внутри зданий.

    Источники шума, расположенные в свободном пространс­тве, по своему характеру делятся на подвижные и стационар­ные, т. е. постоянно или долговременно установленные в каком-либо месте.

    Для источников шума, расположенных внутри зданий, имеют значение характер размещения источников шума по от­ношению к окружающим защищаемым объектам и их соответс­твие предъявляемым к ним требованиям.

    Внутренние источники шума можно подразделить на несколько групп:

    техническое оснащение зданий (лифты, трансформатор­ные подстанции и т. п.);

    Технологическое оснащение зданий (морозильные каме­ры магазинов, машинное оборудование небольших мастерских и т. п.);

    санитарное оснащение зданий (водопроводные сети, смыв­ные краны туалетов, душевые и т. п.);

    бытовые приборы (холодильники, пылесосы, миксеры, стиральные машины и др.);

    аппаратура для воспроизведения музыки, радиоприем­ники и телевизоры, музыкальные инструменты.

    В последние годы отмечается рост шума в городах, что связано с резким увеличением движения транспорта (автомо­бильного, рельсового, воздушного).

    Транспортный шум по характеру воздействия является непостоянным внешним шумом, так как уровень звука изменя­ется во времени более чем на 5 дБ.

    Уровень различных шумов зависит от интенсивности и со­става транспортных потоков, планировочных решений (профиль улиц, высота и плотность застройки) и наличия отдельных эле­ментов благоустройства (тип дорожного покрытия и проезжей части, зеленые насаждения). Наблюдается зависимость уров­ней звука на магистралях от фактических режимов движения транспорта.

    Диапазон колебаний между фоновыми и максимальными (пиковыми) уровнями звука, характеризующими шумовой ре­жим примагистральной территории, в дневное время составляет в среднем 20 дБ.

    Текст работы размещён без изображений и формул.
    Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

    Введение

    Каждый из нас прекрасно понимает, насколько важен комфортный микроклимат в помещении, где мы находимся. А если быть еще точнее, то важен не умозрительный комфорт, которому нет определений, а отсутствие наших мыслей о том, что в помещении душно или же холодно, что само по себе отвлекает наше внимание от эффективного выполнения работы и учебы. С научной точи зрения микроклимат - это совокупность физических факторов внутренней среды помещений, оказывающие влияние на теплорегуляцию и здоровье человека. Микроклиматическими показателями являются: температура, влажность и скорость движения воздуха. Так как в течение учебного года ученикам приходится больше времени проводить в школе, то не маловажную роль играет состояние микроклимата в учебных кабинетах. Поэтому я решила исследовать такие показатели микроклимата, как влажность и температура в учебных кабинетах нашей школы.

    Цель моей работы : Исследовать влажность и температуру воздуха в школе и узнать, как они влияют на здоровье человека.

    Задачи:

      Изучить физические основы теплорегуляции человека и выяснить как влажность и температура воздуха влияет на самочувствие человека.

      Научиться использовать цифровую лабораторию для измерения влажности воздуха и температуры окружающей среды.

      Измерить влажность и температуру воздуха в кабинетах школы.

      Узнать, как влияет температура на влажность воздуха в классе.

      Сравнить полученные данные с санитарно-гигиеническими нормами.

      Экспериментально показать методы изменения влажности воздуха и улучшения качества жизни человека.

    Объект исследования : микроклимат учебных классов школы.

    Предмет исследования : влияние влажности и температуры воздуха на жизнедеятельность человека.

    Методы работы : изучение литературы, наблюдения, проведение экспериментальных исследований с использованием цифровой лаборатории, сравнение и анализ полученных данных.

    Гипотеза исследования : Чем лучше микроклимат внутри помещения, тем лучше мы себя в нем чувствуем. Это зависит от температуры и влажности. Температура напрямую зависит от влажности и наоборот.

    Практическая значимость моего исследования заключается в сформулированных способах регулирования влажности воздуха.

    Актуальность нашего исследования заключается в том, что в последние годы среди учащихся школ высокий процент простудных заболеваний, а низкая влажность и температура вызывает быстрое испарение и высыхание слизистой оболочки носа, гортани, легких, что приводит к простудным и другим заболеваниям. Высокая влажность и температура также вызывает некоторые негативные явления в организме человека, например, нарушается теплообмен организма с окружающей средой, что приводит к перегреву тела.

    1. Теоретическая часть

    1.1. Теоретические основы влажности воздуха

    Атмосферный воздух, который нас окружает представляет собой смесь различных газов и водяного пара. Важное значение для человека наряду с температурой и давлением атмосферы имеет количество в ней водяных паров.

    От влажности зависит интенсивность испарения влаги с поверхности кожи человека. А испарение влаги имеет большое значение для поддержания температуры тела постоянной.

    В зависимости от количества паров, находящихся при данной температуре в атмосфере, воздух бывает различной степени влажности. Абсолютная влажность воздуха (f ) — это количество водяного пара, фактически содержащегося в 1 м³ воздуха. Определяется как отношение массы содержащегося в воздухе водяного пара к объёму влажного воздуха.

    С одной сто-ро-ны, аб-со-лют-ная влаж-ность воз-ду-ха яв-ля-ет-ся по-нят-ной и удоб-ной ве-ли-чи-ной, т. к. дает пред-став-ле-ние о кон-крет-ном со-дер-жа-нии воды в воз-ду-хе по массе, с дру-гой сто-ро-ны, эта ве-ли-чи-на неудоб-на с точки зре-ния вос-при-им-чи-во-сти влаж-но-сти жи-вы-ми ор-га-низ-ма-ми. Ока-зы-ва-ет-ся, на-при-мер, че-ло-век ощу-ща-ет не мас-со-вое со-дер-жа-ние воды в воз-ду-хе, а имен-но ее со-дер-жа-ние от-но-си-тель-но мак-си-маль-но воз-мож-но-го зна-че-ния. Чтобы судить о степени влажности воздуха, важно знать, близок или далёк водяной пар, находящийся в воздухе, от состояния насыщения. Для этого вводят понятие относительной влажности. Относительная влажность воздуха (φ) — это отношение его текущей абсолютной влажности к максимальной абсолютной влажности при данной температуре. Она также определяется как отношение парциального давления водяного пара в газе к равновесному давлению насыщенного пара. Относительная влажность обычно выражается в процентах.

    1.2 Температура

    Не менее важна для человека и температура среды его обитания. Человек способен продолжительно и эффективно функционировать лишь в довольно узком диапазоне температур окружающей среды. Средняя температура тела человека - 36,5 °С. Даже незначительные отклонения от этой температуры в ту или другую сторону приводят к ухудшению самочувствия человека. Обмен веществ, постоянно происходящий в теле человека, приводит к выделению тепла. Процессы регулирования тепловыделений для поддержания постоянной температуры тела человека называются терморегуляцией . Для нормального теплообмена, выделяемая организмом теплота должна полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреву либо к переохлаждению организма и, как следствие, к потере трудоспособности, быстрой утомляемости. Если температура окружающей среды высокая, возникает риск гипертермии (перегрева). В таких случаях система терморегуляции человека увеличивает теплоотдачу за счет испарения влаги, вырабатываемой потовыми железами. Кроме этого осуществляется перераспределение кровотока от внутренних органов к внешней поверхности тела. И наоборот, когда температура окружающей среды заметно и продолжительно опускается, организм включает механизмы терморегуляции, которые уменьшают потери тепла и увеличивают теплопродукцию.

    К таким механизмам относятся:

    Дрожание — быстрое непроизвольное сокращение мышц, в процессе которого выделяется тепло для согрева внутренних органов.

    Отток крови от внешней, охлажденной поверхности тела. Такой отток не позволяет крови отдавать тепло, необходимое для работы внутренних органов. Этот эффект проявляется, в частности, как замерзание пальцев рук и ног.

    Гусиная кожа — мурашки, которые вызываются напряжением микромыщц, отвечающих за положение волосков на коже. У человека это наследие предков является классическим атавизмом, но у наших прародителей эти мышцы поднимали шерсть, увеличивая высоту волосяного покрова. Это удерживало воздух у кожи, который как теплоизолятор уменьшал тепловые потери.

    Однако возможности терморегуляции не безграничны, и при дальнейшем устойчивом понижении температуры среды возникает риск различных нарушений в функционировании организма, развиваются симптомы гипотермии (переохлаждения), появляется дискомфорт, чувство «замерзания».

    1.3 Влияние температуры на влажность в помещении и на здоровье человека

    Тепловые ощущение и переносимость температур во внешней среде во многом зависит от влажности и скорости окружающего воздуха. При низком влагосодержании воздуха, характерном для холодного периода, возрастает отдача тепла человеком за счет интенсивного испарения влаги с поверхности тела, высыхают поверхности слизистых оболочек дыхательных путей, что способствует прониканию болезнетворных микроорганизмов в органы дыхания, восприимчивости организма к простуде и другим заболеваниям. Воздух с очень низким содержанием водяного пара также оказывает неблагоприятное воздействие на кожу человека - она становится сухой, шероховатой и может растрескиваться от натяжения. Очень сухой воздух обычно бывает зимой в теплых помещениях. Нижняя граница влажности составляет около 20%. При более низких значениях влажности существенно возрастает дискомфорт и опасность заболевания ринитами и фарингитами у людей, постоянно находящихся в условиях пониженной влажности воздуха в помещении. Чем больше влажность воздуха, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев организма. Высокая влажность в сочетании с высокой температурой - более 30 градусов по Цельсию, имеет неблагоприятное воздействие на физиологические процессы теплообмена в организме, т.к. при этом почти вся выделяемая теплота отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова, что не обеспечивает необходимой теплоотдачи, а изнуряет и обезвоживает организм. Вместе с потом организм теряет значительное количество минеральных солей, микроэлементов и водорастворимых витаминов. Установлено, что при температуре воздуха более 25 С° работоспособность человека начинает падать. Длительное воздействие высокой температуры особенно в сочетании с повышенной влажностью может привести к значительному накоплению теплоты в организме и развитию перегревания организма выше допустимого уровня - гипертермии - состоянию, при котором температура тела поднимается до 38...39С°. Возникает так называемый тепловой удар, требующий медицинского вмешательства.

    При наружной температуре, приближенной к температуре человеческого тела (около 36,6 градусов), организм предпринимает целый ряд изменений, чтобы помочь себе сохранить здоровье. Это и повышенное потоотделение, изменение частоты и глубины кровообращения, дыхания, а также повышение других показателей, с помощью которых организм предпринимает попытки охладить себя. Однако потоотделение помогает понизить температуру тела только в том случае, если влага, которая выделяется через кожу, активно испаряется, что при повышенной влажности затруднительно.

      Исследовательская часть

    Существуют различные приборы для измерения влажности воздуха, такие как гигрометр и психрометр.

    Для своих измерений я использовала специальный цифровой датчик влажности, который предназначен для регистрации относительной влажности воздуха из комплекта цифровых лабораторий. Он предназначен для работы при температуре от +15°C до +35°C и относительной влажности окружающего воздуха до 90% при 25°C . Пользоваться им очень просто. Он показывает количество влаги в процентном соотношении. Для измерения температуры использовала датчик температуры.

    2.1 Исследование выделительной и терморегуляторной функция кожи

    Кожа играет огромную роль в охлаждении тела. Потоотделение предохраняет организм от перегрева, так как при испарении влаги с поверхности тела тепло отдается в окружающую среду, происходит его охлаждение.

    Цель эксперимента : исследовать терморегуляторную и выделительную функцию кожи, выявить зависимость интенсивности потоотделения от температуры окружающей среды.

      Наденем пакет с датчиками на кисть руки и закрепим его в области запястья с помощью резинового кольца или шнурка.

      Снимем пакет с ладони и извлечём датчики.

      Возьмем другой пакет и снова соберем установку и выполним новый опыт (с теми же параметрами).

      Начнем регистрацию данных. Показания датчика будут отображаться на экране в виде графика.

      Включим лампу и приблизим ее к пакету.

      Запишем данные в течение 2-3 минут.

    Вывод: В ходе первого опыта было обнаружено, что температура и влажность в пакете повышается из-за отсутствия теплообмена с окружающей средой. (Приложение №1) Во втором опыте влажность увеличивается быстрее и достигает более высокого значения, чем в первом, так как от лампы исходит дополнительное тепло. Поэтому для нормального теплообмена, выделяемая организмом теплота должна полностью отводиться в окружающую среду.

    2.2 Исследование условий испарения

    Одним из способов увеличения скорости испарения является движение воздуха - ветер.

    Цель эксперимента : исследовать, как движение воздуха влияет на скорость испарения.

    Порядок проведения эксперимента:

      Начинаем регистрацию данных. Показания датчика будут отображаться на экране в виде графика.

      Измерим температуру тела. Запишем данные в течение 2-3 минут.

      Остановим регистрацию и сохраним данные опыта.

      Начнём обдув и убедимся, что температура изменяется. Показания датчика будут отображаться на экране в виде графика.

      Прислоним датчик к влажной одежде (коже). Запишем данные в течение 2-3 минут.

      Начнём обдув датчика и убедимся в понижении температуры.

      Затем обдув прекратим и зафиксируем рост температуры

      Остановим регистрацию и сохраним полученные результаты.

    Вывод: движение воздуха увеличивает скорость испарения, тело теряет энергию. (Приложение №2)

    Скорость воздушного потока влияет на самочувствие людей: при сильном сквозняке влага интенсивно испаряется с тела и человек может замерзнуть и простудиться даже при высокой температуре воздуха.

    2.3 Исследование влияния проветривания на температуру и влажность внутри помещения

    Подвижность воздуха оказывает существенное влияние на состояние внутренней среды помещения: распределение температур и влажности по объему помещения, наличие застойных зон и т.д. Влияние подвижности воздуха на комфортное состояние человека необходимо рассматривать в совокупности с температурой и влажностью воздушной среды помещения. Согласно данным GISMETEO температура за окном - 19˚C. Мы измерили относительную влажность воздуха в классе до проветривания и после. Результаты измерений занесем в таблицу.

    Цель эксперимента : исследовать влияние проветривания на микроклимат внутри класса.

    Порядок проведения эксперимента:

      Начинаем регистрацию данных. Показания датчика будут отображаться на экране в виде графика.

      Измерим температуру и влажность в помещении до начала проветривания.

      Проветрим кабинет в течение 10 мин.

      Измерим температуру и влажность в помещении после окончания проветривания.

      Оценим, насколько изменилось наше самочувствие в помещении после проведения проветривания.

    Вывод: в результате эксперимента температура в классе незначительно понизилась, влажность увеличивается. Опытным путем мы убедились в том, что микроклимат улучшается. Хотя во время морозов воздух становится более сухим, тем не менее, проветривание выполняет еще одну важную функцию. За счет поступления свежего воздуха внутри помещения существенно снижается концентрация вредных веществ, что благотворно влияет на наше здоровье.

    2.4 Определение влажности и температуры воздуха в помещениях школы

    Так как в течение учебного года ученикам приходится больше времени проводить в школе, то не маловажную роль играет состояние температуры и влажности в учебных кабинетах. Измерения проводились в предметных кабинетах физики, математики, химии (на втором этаже) и в кабинете биологии (на первом)

    Цель работы: Определить температуру и влажность воздуха в разных учебных кабинетах и исходя из полученных данных, выяснить, отвечает ли санитарным нормам условия наших кабинетов

    Во время каникул

    В начале учебного дня

    После учебного дня

    температура

    влажность

    температура

    влажность

    температура

    влажность

    Биология

    Математика

    По результатам работы были сделаны основные выводы:

    1. Во всех кабинетах влажность воздуха понижена и не соответствует нормам.

    2. К концу смены влажность воздуха в кабинетах повышается.

    3. Средняя температура воздуха соответствует норме.

    4. С началом отопительного сезона относительная влажность значительно понижается до недопустимых значений, что в целом способствует обезвоживанию организма в результате теплоотдачи способом испарения. У людей, находящихся в таких условиях, будет ощущаться повышенная жажда и сухость слизистых оболочек, а значит, увеличивается риск простудных и других заболеваний.

    Для улучшения состояния влажности в кабинетах я рекомендую:

    1. Опрыскивание. С помощью этого простого и действенного метода можно увеличить влажность воздуха.

    2. Увеличить в кабинетах количество зеленых насаждений. Листья зеленых растений испаряют воду и способствуют повышению влажности воздуха, а это улучшает самочувствие людей.

    3. Устанавливать резервуары с водой между ребер радиатора

    4. Применять электрические увлажнители воздуха. Он разбрызгивает маленькие капельки воды, которые сразу рассеиваются в воздухе, не оседая на растения, мебель, ковры, растения.

    5. Чаще делать влажную уборку.

    2.5 Изучение уровня заболеваемости учащихся школы

    Современный образ жизни вынуждает нас основную часть времени проводить в «четырех стенах». Особенно в холодный период, наиболее вероятный для различных заболеваний. Поэтому создание благоприятных для здоровья условий в помещении крайне важно. Поддержание нормальной влажности воздуха снижает риск простудных (и не только) заболеваний в разы! Статистические данные уровня заболеваемости учащихся школы за 2015.г. приведены в таблице.

    Число учащихся в школе

    Общее количество заболеваний

    Болезни органов дыхания

    июль,август,сентябрь

    октябрь,ноябрь,декабрь

    январь,февраль,март

    апрель,май,июнь

    (среднее в месяц 25)

    (среднее в месяц 32)

    (среднее в месяц 56)

    (среднее в месяц 26)

    Остальные: 4 грипп,2 пневмония

    Выводы: Из данных таблицы видно, что уровень простудных заболеваний выше именно в тот период, когда используется центральное отопление и, возможно, одной из причин роста заболеваемости является низкий уровень влажности воздуха в помещении.

    Заключение

    Рассмотрев поставленные мною вопросы, я пришла к выводу, что для оптимального теплообмена человеческого организма при температуре 20-25°С наиболее благоприятна относительная влажность порядка 50%. При более высокой температуре предпочтительна влажность около 25%. Поэтому, вооружившись знаниями, в наших силах создать комфортную и здоровую обстановку в школе.

    Использование Цифровой лаборатории при исследованиях в данном проекте позволило мне получить не только знания в области естественных наук, но и опыт работы с интересной, современной техникой и компьютерными программами, получить возможность заниматься исследовательской деятельностью, не ограниченной темой конкретного урока и самостоятельно проанализировать и представить полученные данные исследований. Возможности исследований по теме проекта не ограничиваются экспериментами, предложенными и выбранными в работе.

    В дальнейшем можно изучить относительную влажность и измерить температуру воздуха в разные времена года и т.д.

    Список интернет ресурсов

      https://ru.wikipedia.org/wiki/%D0%9E%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%B2%D0%BB%D0%B0%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D1%8C

      https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BC%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D1%83%D1%80%D0%B0

      http://www.axiomaj.ru/svoboda_-_zdravo_zhit/komfortnyj_mikroklimat.html

      http://membra.ru/science/homeostasis/

      http://www.polymedia.ru/oborudovanie/tsifrovye-laboratorii/

      http://physbook.ru/

    Приложение №1

    Графики исследования выделительной и

    терморегуляторной функции кожи

    Приложение №2

    Графикиисследования условий испарения

    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
  • ПОДЕЛИТЬСЯ:
    Практический журнал для бухгалтеров о расчете заработной платы