Практический журнал для бухгалтеров о расчете заработной платы

Что такое катастрофы и как с ними бороться

Множество сложнейших природных процессов, сопровождающихся преобразованием энергии, служат движущей силой постоянного изменения облика нашей планеты – ее геодинамики. Эти же процессы вызывают и разрушительные явления на поверхности и в атмосфере Земли: землетрясения, извержения вулканов, цунами, наводнения, ураганы и др.

За последние полвека число природных катастроф возросло в пять раз, а материальный ущерб от них вырос десятикратно. Причины этого явления – стремительный рост численности населения и экономики и выраженная деградация природной среды. Техногенное же воздействие человека на литосферу не только активизирует развитие природных катастрофических процессов, но и приводит к появлению новых – уже техноприродных.

Борьба со стихийными бедствиями является важным элементом государственной стратегии устойчивого развития. При выработке концепции «борьбы с катастрофами» важно понимать, что человек не в состоянии приостановить или изменить ход эволюционных преобразований планеты – он может только с некоторой долей вероятности предсказывать их развитие и иногда оказывать влияние на их динамику. Поэтому в настоящее время на первый план выходят задачи по своевременному прогнозированию природных катастроф и смягчение их негативных последствий

Природные катастрофы – источники глубочайших социальных потрясений, приводящих к массовым страданиям, гибели людей и огромным материальным потерям. В основе увеличения числа природных катастроф лежат глобальные процессы, такие как рост численности населения и экономики земной цивилизации, деградация природной среды и изменение климата. Борьба со стихийными бедствиями является важным элементом государственной стратегии устойчивого развития. Она должна основываться на принципах разумного хозяйственного использования территорий, прогнозировании грозящих опасностей и проведении превентивных мероприятий.

Человек с древнейших времен испытывал страх перед грозными проявлениями могущества природы. Как показывает история нашей цивилизации, многие природные катастрофы сопровождались крупными социальными потрясениями. Гибель Помпей в Италии в результате извержения вулкана Везувий (79 г. н. э.) – не единственный пример того, как процветавшие города приходили в упадок в результате стихийных бедствий, а потом и вовсе исчезали. Известны случаи, когда экономические потери от природных катастроф превышали величину валового национального продукта отдельных стран, в результате чего их экономика оказывалась в критическом состоянии. Например, только прямой ущерб от землетрясения в Манагуа (1972 г.) был равен двукратному размеру годового валового продукта Никарагуа.

Анализ исторических данных свидетельствует, что количество природных катастроф на Земле неуклонно растет: только за последние полвека частота масштабных бедствий увеличилась в пять раз. Связанные же с ними материальные потери возросли почти в десять раз, достигая в отдельные годы 190 млрд дол. США. Ожидается, что к 2050 г. социально-экономический ущерб от опасных природных процессов (при существующем уровне защиты) составит почти половину прироста глобального валового продукта. В России средний ущерб от природно-технических катастроф в настоящее время – около 3 % валового внутреннего продукта.

Во всеобщей проблеме безопасности катастрофические явления рассматриваются как один из важнейших дестабилизирующих факторов, препятствующих устойчивому развитию человечества.

Но что, собственно, означает это понятие – природные катастрофы? Каков механизм их зарождения и развития? Можно ли избежать их разрушительных последствий? И почему, несмотря на непрерывный научно-технический прогресс, человечество продолжает чувствовать себя незащищенным?

Разрушительная энергия

По мнению выдающегося советского ученого-естествоиспытателя В. И. Вернадского, земная поверхностная оболочка не может рассматриваться как область только вещества, это и область энергии.

Действительно, на поверхности Земли и в прилегающих к ней слоях атмосферы идет множество сложнейших процессов, сопровождающихся преобразованием энергии. Среди них эндогенные процессы реорганизации материи внутри Земли и экзогенные взаимодействия вещества внешней земной оболочки и физических полей, а также воздействие солнечной радиации.

Все эти процессы являются движущей силой постоянного преобразования облика нашей планеты – ее геодинамики . И они же вызывают разрушительные явления на ее поверхности и в атмосфере: землетрясения, извержения вулканов, цунами, наводнения, ураганы и др.

Природные катастрофы принято подразделять на типы в зависимости от среды, через которую происходит энергетическое воздействие – через земную твердь, воздушную или водную стихию.

Наиболее страшные из них – это, пожалуй, землетрясения . Мощные ударные волны, вызванные глубинными процессами, приводят к разрывам грунта, что оказывает ужасающее разрушительное воздействие на среду обитания человека. Величина выделяемой при этом энергии иногда превышает 1018 Дж, что соответствует взрыву сотни атомных бомб, подобных той, что была сброшена на Хиросиму в 1945 г.

Наиболее сильно страдает от землетрясений Китай, где они происходят почти ежегодно. Например, еще в 1556 г. в результате ряда мощнейших сейсмоударов погибло 0,8 млн человек (около 1 % населения страны). Только за последнее десятилетие погибло около 80 тыс. жителей Китая, а общий экономический ущерб превысил 1,4 трлн юаней.

В России в последние годы наиболее разрушительным стало землетрясение на севере о. Сахалин в мае 1995 г., которое полностью разрушило пос. Нефтегорск и погубило более 2 тыс. человек.

Но все же самым мощным источником энергии на нашей планете являются вулканы . Выброс энергии при вулканическом извержении может стократно превышать «вклад» самого сильного землетрясения. Ежегодно в результате вулканической деятельности в атмосферу и на поверхность Земли выбрасывается примерно 1,5 млрд т глубинного вещества.

В настоящее время на Земле насчитывается около 550 исторически активных вулканов (каждый восьмой из них находится на российской земле). За историческое время непосредственно вследствие вулканической активности в мире погибло не менее 1 млн человек.

В конце XIX в. произошло одно из крупнейших извержений вулкана Кракатау в Юго-Восточной Азии. Миллионы кубометров вулканического пепла, выброшенного в атмосферу, поднялись на высоту около 80 км. В результате наступила «полярная ночь» – на несколько месяцев вся Земля погрузилась в полумрак. Прямые солнечные лучи не достигали поверхности планеты, поэтому резко похолодало. Эту ситуацию позднее сравнивали с феноменом «ядерной зимы» - потенциальным последствием взрыва сверхмощной термоядерной бомбы на поверхности Земли.

Весной прошлого года мир пережил очередную природную катастрофу – извержение вулкана в Исландии, от которого пострадала экономика многих (особенно европейских) стран.

Два сходных по мощности землетрясения 1980-х гг. – в Спитаке (Армения) и Сан-Франциско (Калифорния, США) – имели очень разные последствия. Первое погубило около 40 тыс. человек, второе – всего 40 (!). Причина – различия в качестве использованных строительных конструкций и в организации предупредительных мер

Землетрясения и извержения вулканов, происходящие на водных пространствах, часто приводят к возникновению цунами . Волна, образующаяся в открытом океане при вулканическом взрыве или сейсмическом толчке, у берега может приобрести чудовищную разрушительную силу. Библейский потоп и гибель Атлантиды приписывают извержениям вулкана в Средиземном море, сопровождавшимся цунами.

В XX в. только в Тихом океане было отмечено более двухсот цунами. В декабре 2004 г. череда крупных волн, обрушившихся на северо-восточное побережье Индийского океана, унесла более 200 тыс. человеческих жизней, а экономические потери составили 10 млрд дол.

Библейскую легенду о всемирном потопе часто приходится вспоминать и жителям стран, оказывающихся во власти грандиозных наводнений – затопления местности в результате резкого подъема уровня воды в реках, озерах, водохранилищах. Наводнения опасны сами по себе и к тому же провоцируют множество других природных бедствий – обвалы, оползни, сели.

Одно из самых страшных наводнений произошло в 1887 г. в Китае, когда вода в р. Хуанхэ за считанные часы поднялась на высоту восьмиэтажного дома. В результате погибло около 1 млн жителей этой речной долины.

В прошлом столетии, по данным ЮНЕСКО, в результате наводнений погибло 4 млн человек. Одно из последних сильных наводнений произошло в Чехии летом 2002 г. Вода залила улицы сотен населенных пунктов и городов, включая Прагу, в которой оказались затоплены 17 станций метро.

Подобные крупные катастрофические явления бывают и в России. Так, во время весеннего паводка 1994 г. на р. Тобол случился перелив воды через защитную дамбу г. Курган. В течение двух недель тысячи жилых домов оставались затопленными по крыши. Спустя семь лет произошло еще более разрушительное наводнение на р. Лена в Якутии.

Наконец, нельзя не упомянуть бушующую воздушную стихию: циклоны, штормы, ураганы, смерчи… Ежегодно на земном шаре возникает в среднем около 80 катастрофических ситуаций, связанных с этими явлениями. Океанские побережья часто страдают от тропических циклонов, обрушивающих на континенты ураганные потоки воздуха со скоростью более 350 км/ч, мощные ливневые осадки (до 1000 мм за несколько дней) и штормовые волны высотой до 8 м.

Так, три крупных разрушительных урагана осенью 2005 г. нанесли американскому континенту ущерб в 156 млрд дол. На этом фоне ураганы, гулявшие на рубеже тысячелетий по Западной и Северной Европе, выглядят более скромно – от них потерь было на порядок меньше.

Вездесущее человечество

Одна из основных причин увеличения числа жертв и материальных потерь в результате природных катастроф – неудержимый рост человеческой популяции.

В древние времена численность человечества изменялась незначительно, периоды ее роста чередовались с периодами спада в результате смертности от эпидемий и голода. Вплоть до начала XIX в. население Земли не превышало 1 млрд чел. Однако с наступлением индустриального периода общественного развития ситуация резко изменилась: уже спустя 100 лет население удвоилось, а к 1975 г. превысило 4 млрд чел.

Рост человеческой популяции сопровождается процессом урбанизации. Так, если в 1830 г. городская часть населения планеты составляла чуть более 3 %, то в настоящее время в городах компактно проживает не менее половины человечества. Общая численность населения Земли ежегодно увеличивается в среднем на 1,7 %, но в городах этот рост идет гораздо более быстрыми темпами (на 4,0 %).

Рост населения планеты приводит к освоению малопригодных для проживания людей участков: склонов холмов, пойм рек, заболоченных территорий. Ситуация часто усугубляется отсутствием заблаговременной инженерной подготовки осваиваемых территорий и использованием для застройки конструктивно несовершенных зданий. В результате города все чаще оказываются в центре разрушительных стихийных бедствий, где страдания и гибель людей приобретают массовый характер.

Промышленно-технологическая революция привела к глобальному вмешательству человека в наиболее консервативную часть окружающей среды – литосферу. Еще в 1925 г. В. И. Вернадский отметил, что человек своей научной мыслью создает «новую геологическую силу». Современная геологическая деятельность человека по масштабам стала сопоставима с природными геологическими процессами. Например, в ходе строительных работ и при добыче полезных ископаемых в год перемещается более 100 млрд т горных пород, что примерно вчетверо больше массы минерального материала, переносимого всеми реками мира в результате размыва суши.

Техногенное воздействие человека на литосферу приводит к значительным изменениям в окружающей среде, активизируя развитие природных и инициируя появление новых – уже техноприродных – процессов. К последним относятся опускание территорий в результате глубинной добычи полезных ископаемых, наведенная сейсмичность, подтопление, карстово-суффозионные процессы, появление разного рода физических полей и т. д.

Таким образом, в современной экономике развиваются две противоположные тенденции: глобальный валовой доход растет, а составляющие «природный капитал» жизнеобеспечивающие ресурсы (вода, почва, биомасса, озоновый слой) деградируют. Это происходит потому, что промышленное развитие, призванное служить прежде всего экономическому прогрессу, вошло в противоречие с природной средой, поскольку перестало учитывать реальные пределы устойчивости биосферы.

Например, некоторыми из причин увеличения частоты и масштабов наводнений являются вырубка лесов, осушение водно-болотных угодий, уплотнение почвенного покрова. Действительно, такое «мелиоративное» воздействие приводит к ускорению поверхностного стока с водосбора в речное русло, поэтому во время экстремальных осадков или таяния снега уровень воды в реках резко повышается.

В адское пекло?

Многих людей волнует вопрос – чего нам ожидать в будущем? Согласно библейским откровениям, человеческую цивилизацию погубит огонь. Судя по глобальным изменениям климата на протяжении последних 150 лет, движение к такому «концу света» уже можно считать начавшимся.

По данным Всемирной метеорологической организации, глобальное повышение температуры составило около 0,8 °C. На региональном уровне наблюдаются более контрастные изменения. Например, в северных регионах России за последние 30 лет среднемноголетняя температура воздуха выросла на 1,0 °C, что примерно в 2,5 раза превышает скорость тренда глобальной температуры. Следует заметить, что это различие обусловлено преимущественно повышением средних зимних температур, в то время как в летние сезоны температура может даже слегка понижаться.

В ряде регионов мира в последнее десятилетие летом иногда наблюдалась аномальная жара. Так, в августе 2003 г. температура в некоторых странах Западной Европы поднималась до +40 °C, что вызвало гибель от теплового удара более 70 тыс. человек.

Несмотря на существование различных точек зрения на причины глобальных климатических изменений, сам факт потепления на Земле является неоспоримым. Дальнейшее увеличение температуры воздуха способно оказать как положительное, так и отрицательное воздействие на природную среду, приведя к опустыниванию, затоплению и разрушению морских побережий, сходу с гор ледников, отступанию вечной мерзлоты и т. п.

Острейшей гуманитарной проблемой становится нехватка питьевой воды. Сильнейшие засухи отмечались в последние годы в Латинской Америке, Северной Африке, Индии и Пакистане. Ожидается, что в ближайшем будущем площадь территорий, испытывающих острый дефицит влаги, существенно расширится. Число «экологических беженцев» продолжает быстро расти.

Одна из наиболее серьезных опасностей, связанных с глобальным потеплением, – таяние ледового покрова Гренландии и высокогорных ледников. По данным спутниковых наблюдений, с 1978 г. площадь морского льда в Антарктике сокращается в среднем на 0,27 % ежегодно. Одновременно уменьшается и толщина ледовых полей.

Таяние ледников и тепловое расширение воды привело к повышению уровня Мирового океана на 17 см за последние 100 лет. Ожидается, что в ближайшие годы уровень океана будет подниматься в 5-10 раз быстрее, что приведет к крупным финансовым затратам на обеспечение безопасности прибрежных низменных территорий. Так, при подъеме уровня Мирового океана на полметра Нидерландам потребуется около 3 трлн евро для борьбы с затоплением, а на Мальдивских островах защита одного лишь погонного метра побережья обойдется в 13 тыс. дол.

Потепление будет сопровождаться и деградацией многолетнемерзлых горных пород в криолитозоне, составляющей значительную часть территории нашей страны. Отмечено, что за прошедшее столетие площадь распространения вечномерзлых грунтов в Северном полушарии сократилась на 7 %, а максимальная глубина промерзания уменьшилась в среднем на 35 см. При сохранении существующей климатической тенденции граница сплошной вечной мерзлоты за десятилетие переместится к северу на 50-80 км (Осипов, 2001).

Деградация криолитозоны вызовет развитие таких опасных процессов, как термокарст – опускание территории в результате вытаивания льдов и образования наледей. Это, несомненно, усугубит проблему безопасности объектов газовой и нефтяной отраслей при освоении минеральных ресурсов Севера.

Профилактика катастроф

До недавнего времени усилия многих стран по «уменьшению опасности» стихийных бедствий были направлены лишь на ликвидацию их последствий, оказание помощи пострадавшим, организацию технических и медицинских услуг, поставку продуктов питания и т. п. Однако устойчивая тенденция к увеличению частоты катастрофических событий и размера связанного с ними ущерба делает эти мероприятия все менее эффективными.

При выработке концепции «борьбы с катастрофами» важно понимать, что человек не в состоянии приостановить или изменить ход эволюционных трансформаций планеты – он может только с некоторой долей вероятности прогнозировать их развитие и иногда оказывать влияние на их динамику. Поэтому в настоящее время специалисты считают приоритетными новые задачи: предупреждение природных катастроф и смягчение их негативных последствий.

Центральное место в стратегии борьбы со стихией занимает проблема оценки риска , т. е. вероятности катастрофического события и величины ожидаемых человеческих жертв и материальных потерь.

Степень воздействия природной опасности на людей и объекты инфраструктуры оценивается показателем их уязвимости . Для людей это снижение способности выполнять свои функции вследствие гибели, потери здоровья или увечья; для объектов техносферы – уничтожение, разрушение или частичное повреждение объектов.

Регулировать развитие большинства природных опасностей – весьма сложная задача. Многие природные явления, такие как, например, землетрясения и извержения вулканов, вообще не поддаются прямому управлению. Но имеется многолетний положительный опыт воздействия человека, в частности, на некоторые гидрометеорологические явления.

Так, в научных организациях Росгидромета были разработаны технологии внесения активных реагентов в облачные поля при помощи ракетной, авиационной и наземной техники с целью искусственного увеличения и перераспределения атмосферных осадков, рассеивания туманов в окрестностях аэропортов, предотвращения градобития сельскохозяйственных культур. Стало возможным регулирование атмосферных осадков во время техногенных катастроф. Так, после взрыва на Чернобыльской атомной электростанции в 1986 г. был предотвращен дождевой смыв продуктов радиационного загрязнения в речную сеть.

Значительно чаще превентивные меры осуществляются косвенным образом, путем повышения устойчивости и защищенности по отношению к природным опасностям и самих людей, и инфраструктуры. Среди наиболее важных мер по снижению их уязвимости рациональное использование земель, тщательная инженерная подготовка объектов инфраструктуры и защита территорий, на которых они размещаются, организация средств предупреждения и экстренного реагирования.

Участки внешне однородной территории с разнообразными геоморфологическими, гидрогеологическими, ландшафтными и другими условиями реагируют на природные воздействия неодинаково. Например, в низинных участках, сложенных слабыми водонасыщенными грунтами, интенсивность сейсмических колебаний может оказаться в несколько раз выше, чем на соседнем участке, сложенном скальными породами.

Очевидно, что для снижения уязвимости и повышения безопасности необходимо строго обоснованно и ответственно подходить к выбору земельных участков для строительства населенных пунктов, промышленных и гражданских объектов, элементов жизнеобеспечивающих систем и т. д. Для решения этой задачи проводится инженерно-геологическое районирование территории, которое заключается в выявлении участков с одинаковыми или близкими геологическими характеристиками и их ранжировании по степени пригодности для хозяйственного освоения и устойчивости к воздействию природных и техногенных опасностей.

Для сейсмоопасных территорий составляется также карта сейсмического микрорайонирования. Ее основное назначение – выделять зоны различной сейсмической опасности (балльности) с учетом всех факторов, влияющих на распространение в геологической среде упругих волн. Например, при участии Института геоэкологии им. Е. М. Сергеева РАН было проведено подобное зонирование Имеретинской низменности на территории Адлерского района, где возводится комплекс сооружений для Олимпийских игр 2014 г.

Природная опасность – экстремальное явление в литосфере, гидросфере, атмосфере или космосе. Риск природной опасности, согласно терминологии ООН, – это ожидаемые социальные и материальные потери в количественном измерении в данном районе за определенный период времени.
Оценка риска производится на основе данных о вероятности проявления природной опасности, ее физических параметрах, а также о месте и времени возникновения.
Если природная опасность появляется на урбанизированных или хозяйственно-освоенных территориях и воздействует непосредственно на людей и объекты материальной сферы, то происходит реализация риска со всеми вытекающими последствиями.
Уязвимость характеризует неспособность людей, а также элементов социальной и материальной сферы противостоять природным явлениям. Выражается в относительных единицах или процентах.
Процедура анализа риска заключается в вычислении ожидаемых потерь при проявлении природной опасности на основе ее количественной оценки и определения величины уязвимости реципиентов риска (людей и объектов).
В случае, когда рассчитанный уровень риска оказывается неприемлемым (критерии приемлемости пока очень субъективны), осуществляют управление риском, т. е. выполняют мероприятия по его снижению. Одни из них непосредственно воздействуют на развивающиеся опасные природные явления, другие способствуют уменьшению уязвимости техносферы и повышению безопасности людей

Нередко возникает необходимость использовать заведомо непригодные для строительства земли, например, участки морских побережий и долин рек, склонов гор, территории с закарстованными и просадочными грунтами. В этом случае проводят превентивные инженерные мероприятия, направленные на повышение устойчивости территорий и защиту самих сооружений: возводят сплошные стены и дамбы, строят дренажные системы и водосбросы, производят поднятие территории с помощью отсыпки грунта, укрепляют грунты путем их уплотнения, цементации и армирования.

Недавний пример крупномасштабного защитного гидротехнического строительства – возведение защитной дамбы, которая перекрыла часть Финского залива и устье Невы. Потребность в подобном сооружении была велика, так как практически ежегодно за счет ветрового нагона из Балтийского моря воды Невы поднимались выше 1,5 м – уровня, в расчете на который проектировался Санкт-Петербург. Это приводило к затоплению отдельных районов города. Законченная в 2009 г., дамба выдерживает подъем воды свыше 4 м, что полностью избавляет жителей от угрозы наводнения.

Однако защита территории и даже рациональный выбор участка под строительство не являются достаточными условиями безопасности. Основная причина гибели людей в природных катастрофах связана с обрушением жилых и промышленных зданий. Поэтому необходимо совершенствование проектных решений, использование более прочных материалов, а также диагностика состояния уже построенных зданий и сооружений и периодическое укрепление их конструкций.

Успешное управление природной безопасностью не может существовать без системы предупреждения и экстренного реагирования, которая включает в себя средства наблюдения за развитием опасных процессов (средства мониторинга ), оперативной передачи и обработки получаемой информации, оповещения населения о назревающей опасности.

Мониторинг – важнейшее звено системы прогнозирования и предупреждения. Прогностический мониторинг предназначен для организации регулярных наблюдений за аномальными явлениями природы или геоиндикаторами, отражающими их развитие. Проведение такого мониторинга в течение длительного времени позволяет создавать банки данных и временные ряды наблюдений, анализ которых дает возможность выяснять закономерности динамики опасного процесса, моделировать причинно-следственные связи его развития и предсказывать возникновение экстремальных ситуаций.

Для смягчения последствий от «мгновенно» развивающихся катастрофических процессов (например, землетрясений) в случае отсутствия надежных методов их прогнозирования целесообразно применять так называемый охранный мониторинг. Он настраивается на экстремальную фазу катастрофического события и позволяет без вмешательства человека автоматически принимать срочные меры по минимизации последствий опасного процесса за считанные секунды до наступления критического момента.

Чаще всего по сигналу охранной мониторинговой системы осуществляется отключение объекта от энергообеспечивающих систем (газ, электричество), оповещение персонала и др. Такие системы устанавливают на особо ответственных и опасных объектах, прежде всего на атомных станциях, нефтеперерабатывающих заводах, морских платформах нефтедобычи, насосных станциях химических продуктопроводов и т. п.

Примером охранного мониторинга может служить система сейсмической безопасности, основанная на применении акселерометров (измерителей величины ускорения) сильных движений. Она была разработана в Институте геоэкологии им. Е. М. Сергеева РАН и установлена на нефтедобывающих платформах, расположенных на шельфе о. Сахалин. Анализ показаний приборов с помощью специального алгоритма дает возможность различать колебания объекта, вызванные сейсмическими и иными причинами. Поэтому система подает тревожный сигнал только тогда, когда уровень заданной пороговой интенсивности превышен, и не реагирует на другие сотрясения. Так исключается возможность «ложной тревоги».

В последние десятилетия наметились опасные тенденции в развитии природных процессов, во многом обусловленных ростом численности населения и экономики земной цивилизации. Необратимый рост числа катастрофических событий, в том числе техноприродного происхождения, выдвигает в качестве важного государственного приоритета оценку природных рисков и разработку методов борьбы с ними.

Эффективное управление рисками опирается на современный уровень знаний о природных явлениях, системную организацию наблюдений за опасными процессами, адекватную культуру хозяйственной деятельности и принятие ответственных управленческих решений на разных уровнях власти. Стратегию управления рисками следует осуществлять во всех проектах и инвестиционных программах, связанных со строительством, образованием, социальным обеспечением, здравоохранением.

После стремительного прорыва в космос человечество вновь обращает свой взгляд к общему дому – планете Земля. Общепланетные проблемы в наступившем столетии должны занять важное место среди фундаментальных и практических задач, ибо от их решения во многом зависит будущее нашей цивилизации.

Литература

Глобальная экологическая перспектива (Гео-3): прошлое, настоящее и перспективы на будущее / Ред. Г. Н. Голубев. М.: ЮНЕПКОМ, 2002. 504 с.

Осипов В. И. Природные катастрофы на рубеже XXI века // Вестник РАН. 2001. Т. 71, № 4. С. 291-302.

Природные опасности России: в 6-ти т. / Под общ. ред. В. И.Осипова, С. Шойгу. М.: Издательская фирма КРУК, 2000-2003: Природные опасности и общество / Под ред. В. А. Владимирова, Ю. Л. Воробьева, В. И. Осипова. 2002. 248 с.; Сейсмические опасности / Под ред. Г. А. Соболева. 2001. 295 с.; Экзогенные геологические опасности / Под ред. В. М. Кутепова, А. И. Шеко. 2002. 348 с. ; Геокриологические опасности / Под ред. Л. С. Гарагуля, Э. Д. Ершова. 2000. 316 с.; Гидрометеорологические опасности / Под ред. Г. С. Голицына, А. А. Васильева. 2001. 295 с.; Оценка и управление природными рисками / Под ред. А. Л. Рагозина. 2003. 320 с.

В статье использованы фотографии вулканов с сайта www.ngdc.noaa.gov/hazard/volcano.shtml Министерства торговли, Национального управления по исследованию океанов и атмосферы и Национальной информационной службы спутниковых данных об окружающей среде США

Главные меры (усилия) человека по борьбе с авариями и катастрофами должны быть направлены на их профилактику и предупреждение. Принятые меры либо полностью исключают, либо локализуют техногенные аварии и катастрофы. В основе таки мер лежит обеспечение надежности технологического процесса.

Основные меры обеспечения надежности функционирования объекта:

  • 1. Выполнение требований государственных стандартов и строительных норм и правил, которые направлены на то, чтобы максимально исключить возможность аварии.
  • 2. Жесткая производственная дисциплина. Точное выполнение технологических процессов. Использование оборудования в строгом соответствии с его техническим назначением.
  • 3. Дублирование и увеличение запасов прочности важнейших элементов производства.
  • 4. Чёткая организация службы инспекции контроля и безопасности.
  • 5. Тщательный подбор кадров, повышение практических знаний в объёме выполняемой работы.
  • 6. Оценка условий производства с точки зрения возможности возникновения аварии.

Оценка последствий техногенных аварий

Любая чрезвычайная ситуация несет за собой последствия. Которые оказывают влияние практически на все сферы жизни человеческого общества и прежде всего это на жизнедеятельность людей и в огромном количестве на окружающую природную среду.

Ущерб от катастроф носит разнообразный характер. Чтобы его измерить используют различные измерения, среди которых главную роль играют экономические показатели. В последнее время государство уделяет огромное значение в выделение средств на мероприятия по предупреждению и ликвидации возможных и уже реально действующих чрезвычайных ситуаций, а также на ликвидации их последствий. Данное выделение денежных средств и осуществление мероприятий помогает защитить население от возможных катастроф, а также снизить социально-экономический ущерб и повысить уровень безопасности.

Результаты исследований показало, что техногенные и природные аварии и катастрофы, произошедшие в России за последние 10-15 лет, становятся все более опасными для экономики, населения и окружающей среды. Уже сейчас прямые и косвенные ущербы от них составляют 4-5% от валового национального продукта.

По данным, общемировой экономический ущерб стихийных бедствий за 60-е годы составил 40 млрд. долларов США. В 80-х годах этот показатель вырос до 120 млрд. В первой половине 90-х ежегодный ущерб более чес в десять раз превысил уровень данного показателя за 60-е. Если посчитать сумму всего ущерба от стихийных бедствий за 90-е, то он приблизиться к 400 млрд. долл. США. А если брать наше время, то материальный ущерб возрос в неимоверные количества. По оценке МЧС России, уже сейчас ущерб от природных бедствий во много раз превышает возможности мирового сообщества по оказанию гуманитарной помощи пострадавшим. Эта проблема приобрела глобальный характер.

К экономическим последствиям чрезвычайных ситуаций в целом относятся:

  • - сокращение основных производственных механизмов за счет их полного или частичного разрушения;
  • - выход сельскохозяйственных, лесных и водных угодий из хозяйственного оборота;
  • - разрушение объектов социально-культурной сферы;
  • - сокращение трудовых ресурсов и рабочей силы;
  • - снижение уровня жизни населения;
  • - косвенные убытки и ущерб упущенной выгоды в сфере материального производства и услуг;
  • - расходы государства на ликвидацию чрезвычайных ситуаций.

При оценивание экономического ущерба принимаются во внимание только прямые материальные ценности. С принятием федерального закона «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера» от 11 ноября 1994 года Россия сделала первые шаги к стандартизации понятия экономических последствий от чрезвычайных ситуаций. Одна из основных целей этого закона - снижение размеров ущерба и потерь от чрезвычайных ситуаций.

Психопатологические последствия ЧС:

Зачастую серьезные масштабные чрезвычайные ситуации приводят к психологическим отклонениям у людей. Каждый человек по-разному реагирует на ту или опасность. У многих людей нервная система слабая.

Различают следующие негативные последствия:

  • - непосредственный, возникающие во время самой ЧС;
  • - ближайшие, могут возникнуть в течение следующего года как произошла ЧС;
  • - среднесрочные, возникновение их может быть в течение 5 лет как произошла ЧС;
  • - отдаленные, могут возникнуть и через пять лет.

Каждый человек во время чрезвычайной ситуации испытывает стресс. Стресс в свою очередь бывает разный. Различают эустресс и дистресс. Эустресс является нормальным для человека, он служит в целях сохранения и поддержания жизни. А диастресс является патологический стрессом и проявляется в болезненных симптомах.

Последствия ЧС можно разделить на несколько типов:

  • · медицинские - диссоциативные расстройства, нарушение в поведение, психосоматические заболевания, а также злоупотребление психоактивными веществами;
  • · психологические - стигматизация и дискриминация, злость, ожесточение, изменение иерархии ценностей, нарушение в мужличностных отношениях, формируется в своем роде месть;
  • · социальные последствия - снижение социальной активности, уменьшение работоспособности, антисоциальное поведение.

Наиболее распространенным и научно изучаемым расстройством в результате чрезвычайной ситуации является посттравматическое стрессовое расстройство. На возникновение данного расстройства влияют такие факторы как:

  • - личностные - повышенная уязвимость, предварительных травм, соматическая обессиленность;
  • - гендерные - у женского пола достоверно чаще возникают посттравматическое стрессовое расстройство, однако они быстрее и выздоравливают;
  • - возраст - имеется линейная подчиненность между старшим возрастом и частотой формирования расстройства;
  • - социальная поддержка - наличие общественной и родственной поддержки значительно снижает риск возникновения стрессового расстройства. Зачастую люди, пострадавшие от ЧС не обращаются за помощью в специализированную службу психического здоровья, что усложняет дальнейшее лечение.

Социальный ущерб населению и территории в результате воздействия факторов чрезвычайной ситуации; оказывают отрицательное влияние на физическое, материальное и моральное состояние людей, снижают их благополучие и жизнедеятельность. Одним из важных видов социальных последствий чрезвычайных ситуаций является снижение качества жизни, особенно таких её показателей как: состояние здоровья, степень удовлетворения жизненных требований населения, утрата достояния, резкое нарушение привычного уклада жизни, личные невзгоды, физические и моральные страдания. Социальные последствия чрезвычайных ситуаций оказывают существенное влияние на демографическую ситуацию в стране, выражающуюся в снижении численности населения в районах бедствия за счет вынужденных переселенцев из этих районов, в изменении профессиональной структуры населения, его возрастного состава и т.д. Социальные и другие последствия могут негативно сказываться на реализации социальных и экономических программ, тем самым снижая экономические возможности государства. Анализ последствий крупных аварий и катастроф показывает, что затраты на их ликвидацию, создание приемлемых условий для жизнедеятельности населения могут существенно влиять на социально-экономическое развитие государства и даже подрывать его основы.

Для того, что бы сделать по минимуму масштабные чрезвычайные ситуации нужно применить выполнить следующее:

Изменить или дополнить действующие нормативные правовые акты Российской Федерации;

Изменить нормативные правовые акты органов государственной власти Российской Федерации и органов управления территорией, на которой введено чрезвычайное положение в соответствии с пунктом «б» статьи 3 Федерального конституционного закона «О чрезвычайном положении»;

Применить принципы организации управления экономическим обеспечением: централизованного руководства, комплексности, плановости и контроля, взаимосогласованности и заблаговременности;

Проанализировать правовое регулирование и организацию управления на основе создания отраслевых моделей экономического обеспечения масштабных ЧС определенного вида и единого перечня средств ликвидации ЧС;

Развитие в экономическом обеспечении правовых основ для ликвидации масштабных ЧС и др. ;

Органами управления по ликвидации масштабных ЧС: является органы государственной власти; органы управления территорией;

Построение этапов формирования правовых и организационных основ для ликвидации масштабных ЧС:

  • 1-го - до создания органов управления территорией, на которой введено чрезвычайное положение;
  • 2-го - после создания этих органов;
  • 3-го при плановом проведении работ;
  • 4-го - при переходе к отмене мер и временных ограничений.

Тема: Техногенная катастрофа. Можно ли избежать?

Выполнил:

Ученик 6 В класса

МБОУ лицей Технический

Новиков Александр

Самара 2015

Введение

  1. Жизнь до 5
  2. Что такое техногенная катастрофа? 5
  3. Последствия. 6
  4. Меры предостороженности. 8
  5. Заключение. 9
  6. Список литературы. 11

Введение

Когда мы слышим фразу – Техногенная катастрофа, то невольно содрогаемся и представляется что-то страшное и это действительно так. Исследование данной темы волнует нас с точки зрения обеспечения безопасности всего человечества.

На этапе возникновения человечества людям угрожали опасности природных явлений, но впоследствии творцом опасностей стал сам человек, который искал способы защиты от этих опасностей.

Вмешательство человека в природу резко увеличилось, расширился его объем, стали разрабатываться новшества и они стали более разнообразными

Но обратная сторона этого то, что грозит стать глобальной опасностью для всех людей на планете.

Происхождение опасностей может быть различным – природные, техногенные, антропогенные, биологические, экологические, социальные Количество чрезвычайных ситуаций за последние 30 лет возросло, соответственно растет число жертв и материальный ущерб.

Мы будем говорить о техногенных катастрофах, потому что их создает сам человек, и он же может их не допустить.

Постановка проблемы.

Сегодня технологические катастрофы – это одна из глобальных проблем человечества. С каждым днём они становятся более глобальными и мощными наряду с развитием науки и техники. Последствия этих катастроф, в большинстве случаев, необратимы. В погоне за комфортом и богатством люди не обращают внимания на последствия этой гонки и сами же страдают из-за этого. Избежать этих катастроф не удастся, но возможно уменьшение их количества, за счёт более разумного и рационального подхода человека к своей деятельности.

Актуальность данного исследования обусловлена тем, что в современных условиях во всех видах деятельности человека, несущих угрозу окружающей среде, необходимо уделять большое внимание ошибкам прошлых лет и в будущем стараться избегать аналогичных действий, которые уже стали частью горького опыта человечества.

Цель моего исследования узнать причину техногенных катастроф, последствия и влияния на нашу жизнь. И жизнь человечества в будущем.

Что это бы выяснить я поставил перед собой следующие задачи

  1. Найти информацию по самым крупным техногенным катастрофам.
  2. Объяснить их причины и последствия
  3. Рассмотреть на примере одной катастрофы (ЧАЭС)
  4. Составить небольшой прогноз на будущие годы и дать оценку прогнозирования техногенных катастроф.

Гипотеза: Во власти ли человека избежать такие ситуации и что для этого надо?

1.Жизнь до

Наша планета существует уже 4,5 млрд. лет. Весь этот огромный интервал времени на ее поверхности постоянно происходили сложные физико-химические процессы, возникла жизнь, формировалась атмосфера, развились сложно организованные животные и растения. Все эти изменения происходили очень медленно, растягиваясь на сотни миллионов лет. В настоящее время наука и техника достигли такого высокого уровня, что мы уже можем предугадывать многие природные катастрофы, а в скором времени, несомненно, научимся и предупреждать их. Однако тот же самый технический прогресс породил много, и в том числе такой новый термин как “техногенная катастрофа”.

2.Что такое техногенная катастрофа?

Прогресс человечества невозможен без новых технологий. В свою очередь, использование техники влечет за собой возможные ее сбои, просчеты в технологии ее производства и использования.

Техногенная катастрофа - крупная авария, влекущая за собой массовую гибель людей и даже экологическую катастрофу. Одной из особенностей техногенной катастрофы является её случайность (тем самым она отличается от терактов). Техногенные катастрофы могут вызвать панику, транспортный коллапс, а также привести к подъему или потере авторитета власти. Юридически классифицируют как чрезвычайную ситуацию

Техногенные катастрофы занимают одно из ведущих мест среди катастроф по количеству человеческих жертв. Если сравнивать техногенные и природные катастрофы, то природные человечество уже более-менее научилось прогнозировать, техногенные же нет. По количеству, техногенные катастрофы уже превышают природные.

Технический прогресс делает нашу жизнь комфортнее. Однако техногенные катастрофы не только уносят тысячи человеческих жизней, но и обходятся государствам и корпорациям в гигантские суммы.

3. Последствия

Рассмотрим самые крупные техногенные катастрофы на предприятиях ядерного комплекса

12 марта г. - авария на Фукусима-1 (Япония) . Сформирована 40 километровая зона отчуждения, с полным выселением людей. Выброс в атмосферу неизвестен. Но властями заявлено полное разрушение трёх энергоблоков.

Даже из краткого содержания мы видим огромную глобальную проблему.

Чтобы показать масштабы рассмотрим отдельно Чернобыльскую Атомную Электростанцию в Средствах массовой Информации чаще всего употребляется термин Чернобыльская катастрофа

26 апреля 1986 года в результате разрушения 4-го энергоблока Чернобыльской АСЭ произошел взрыв ядерного реактора и выброс радиоактивных веществ в атмосферу и воду. 336 тысяч человек были переселены с постоянных мест обитания. Количество погибших в результате аварии - впервые дни ядерного взрыва составляет 57 человек. Из 600 тысяч человек, участвовавших в разное время в ликвидации последствий аварии, 4 тысячи умерли от рака.

Общие расходы на устранение последствий, эвакуацию населения и компенсации пострадавшим оцениваются приблизительно в 200 миллиардов долларов.

А самое страшное, то, эта проблема еще надолго коснулась многих людей. Рождались дети с тяжелой формой заболевания, которые генетически несли заболевание в будущее.

После проведения многих проверок было выявлено то, что виной всему был человек. П ерсонал допустил ряд ошибок и нарушил существующие инструкции и программу испытаний, что повлекло за собой самую огромную в мире техногенную катастрофу ядерного характера.

В результате аварии из сельскохозяйственного оборота было выведено около 5 млн. га земель, вокруг АЭС создана 30-километровая зона отчуждения, уничтожены и захоронены (закопаны тяжёлой техникой) сотни мелких населённых пунктов.

Люди, проживающие в этих местностях, получили огромные дозы облучения, которые впоследствии сказались на их здоровье. Результатом этого были острые лучевые болезни, онкологические заболевания, и наследственные болезни.

4.Меры предосторожности

Поскольку техногенные катастрофы детерминированы человеческим фактором, то проводится работа по их профилактике : ведется тестирование техники на вопрос её износа, проверяется дисциплина и профессионализм обслуживающего персонала . Поскольку полностью предотвратить возможность техногенной катастрофы нельзя, то необходимо предусмотреть мероприятия по своевременному оповещению о её возможном начале, планы её локализации, эвакуации населения из пострадавшего района и организация помощи пострадавшим и выжившим в зоне бедствия

5.ЗАКЛЮЧЕНИЕ

Проведя эту работу, я сделал много выводов для себя.

По статистике, в 80% техногенных катастрофах признают человеческий фактор. Значит что-то нужно менять в сознании людей. Если донести до каждого человека как важно нести ответственность за технику, а значит ответственность и за жизни людей. Быть может, если люди будут заботиться о безопасности других людей, нежели о своей выгоде и прибыли, будут создавать более усовершенствованные и безопасные предприятия, то и количество техногенных катастроф уменьшится в разы.

Сейчас в России вводятся новые, большей частью экспериментальные, агрегаты оборудования. И все это огромный риск не только для людей, но и для природы, а значит и всех наших ресурсов. Россия богата природными ресурсами, не для кого это не секрет. Но если мы будем сейчас засорять почву, загрязнять воды и заражать радиационными и химическими отбросами воздух, наша планета вряд ли скажет нам спасибо.

На данный момент, в идеале, каждый человек, живущий рядом с каким-либо опасным в случае катаклизма или катастрофы предприятием или заводом, должен знать пути эвакуации и меры безопасности, а также действия, которые он будет совершать в случае непредвиденной ситуации. К сожалению, такое редко встречается. В реальности людей в таких случаях охватывает паника, начинается бездействие. Поэтому, я считаю, лучше не допускать такие случаи, не рисковать жизнями людей и не портить драгоценную природу на нашей планете.

Скептики могут сказать, что во вселенских масштабах наша Земля практически ничего не значит и, поэтому все катастрофы, которые происходят с ней никак не сказываются на общем ходе развития вселенной и нам, собственно не о чём беспокоится. Но нам жить тут, на Земле (ну, по крайней мере, ближайшие лет 200) и поэтому надо сделать всё возможное, чтобы не ускорять процессы развития Земли (тенденция которых – деградация планеты), а наоборот, прикладывать все силы, чтобы затормозить эти процессы, или, хотя бы, не вмешиваться в них

Ведь механизм «экологических» катастроф предельно прост. Природа вся живет в круговоротах, человек же действует прямолинейно. Живя иллюзиями, он мнит себя властителем природы, развивает максимальную скорость - и не вписывается в очередной поворот. В результате - катастрофа. Можно и так сказать: он ведет автомобиль цивилизации вопреки правилам дорожного движения, которые установила природа.

Прежде всего, из-за утраты контроля над технологиями, например, мир может исчезнуть в результате атомной войны, череды ядерных катастроф, появления неконтролируемых машин и механизмов, утраты контроля над искусственно произведенными ядовитыми химическими или биологическими субстанциями и пр. Каждая техногенная катастрофа по-своему уникальна.

Однако есть и общие причины, которые стоят за несчастьями этого рода. Исследователь. Ли Дэвис, автор справочника "Рукотворные Катастрофы, перечисляет их в таком порядке: Глупость, Небрежность и Корысть.

По мнению Дэвиса, так называемый "человеческий фактор" техногенных катастроф практически целиком сводится именно к этим обстоятельствам.

6. Список литературы

1. ХХ век. Хроника необъяснимого: От катастрофы к катастрофе. – М.: АСТ Олимп, 1998.

2. Алымов В.Т. и др. Анализ техногенного риска: Учеб. пособие. – М.: Круглый год, 2000.

3. Арманд А.Д., Рукотворные катастрофы - М.,1993г.

4. Безопасность и предупреждение чрезвычайных ситуаций. Механизмы регулирования и технические средства: Каталог–справочник / Институт риска и безопасности. – М., 1997.

5. Глобальные проблемы как источник чрезвычайных ситуаций: Междунар. конф., 22-23 апр. 1998 г. – М.: УРСС, 1998.

6. Козлитин А.М., Попов А.И. Методы технико-экономической оценки промышленной и экологической безопасности высокорисковых объектов техносферы - Саратов: СГТУ, 2000.

7. Маньяков В.Д. Безопасность общества и человека в современном мире: Учебное пособие. - СПб.: Политехника, 2005.

8. Микрюков Ю.В. Безопасность жизнедеятельности М., 2006.

Интернет:

9. Саяно-Шушенская катастрофа. http://www.atominfo.ru

10. Проблемы атомной энергетики. http://www.energospace.ru

Изобретение относится к проблемам экологии и защиты окружающей среды от последствий техногенных катастроф. Обеспечивает безопасность эксплуатации объектов хранения и переработки вредных веществ. Сущность изобретения: способ включает мероприятия по сбору загрязняющих веществ. Согласно изобретению под промышленным объектом, являющимся источником загрязнения окружающей природной среды, подземных и грунтовых вод, в процессе его эксплуатации бурят, по меньшей мере, одну горизонтальную двухустьевую скважину. Устанавливают перфорированные обсадные колонны или фильтрующие трубы. Постоянно или периодически контролируют наличие в скважине загрязняющих веществ и при их наличии производят откачку. Дополнительно с одной стороны, например против водоема или по периметру объекта, возводят подземный барьер локализации загрязнения. Для этого бурят одну или несколько горизонтальных двухустьевых скважин, расположенных друг над другом. Устанавливают перфорированные обсадные колонны. Цементируют пространство между ними. 1 з.п. ф-лы, 4 ил.

Изобретение относится к проблемам экологии и защиты окружающей среды от последствий техногенных катастроф. Интенсивное развитие нефтегазового комплекса страны обуславливает освоение и ввод в действие крупнейших нефтяных и газовых месторождений, широкомасштабное строительство сетей мощных нефте- и газопродуктов, насосных станций и объектов наземного базирования для хранения и переработки продуктов. Указанные обстоятельства выдвигают ряд требований обеспечения безопасности эксплуатации этих объектов. Все сказанное выше относится в полной мере и к объектам хранения и переработки других вредных химических веществ: фосфатов, нитратов и т. д. Вредное воздействие нефтепродуктов и ядовитых веществ может реализоваться двумя способами: либо в виде небольших, но длительно происходящих утечек продукта или как выброс больших объемов этих веществ в результате аварии. В любом случае вредные вещества накапливаются в подземных и грунтовых водах и часто выходят в открытые водоемы. Известны многочисленные способы предотвращения техногенных катастроф объектов хранения и переработки вредных веществ, например нефтепродуктов, описанные в книге И.И. Мазура "Экология строительства объектов нефтяной и газовой промышленности". - М.: Недра, 1991, с. 18 и 19. Это в основном научные и чисто теоретические мероприятия, не содержащие конкретных технических решений по предотвращению катастроф и уменьшению их вредных последствий: 1. Научное обеспечение охраны окружающей среды при строительстве нефтегазовых объектов. 2. Нормативное и проектное обеспечение охраны окружающей среды. 3. Организационное обеспечение природоохранной деятельности в отрасли. 4. Расширение агитации, пропаганды, обучения и воспитания по вопросам охраны окружающей среды. Недостатки этих мероприятий очевидны: все они являются чисто организационными и не содержат ни одного конкретного технического или технологического решения. Известны также технические мероприятия для предотвращения техногенных катастроф, например организация сбора загрязнений в специальные емкости с их последующей вывозкой, описанные в книге Мазура И.И. Экология строительства объектов нефтяной и газовой промышленности. - М.: Недра, 1991, с. 54 и 55 (прототип). Недостаток этого мероприятия заключается в том, что в случае прорыва и выброса вредных веществ на слой почвы они уходят в подземные и грунтовые воды и для их извлечения требуется бурение многочисленных вертикальных скважин для сбора этих веществ, а также в их прорыве и истечении в открытые водоемы с отрицательными экологическими последствиями. Задача создания изобретения - обеспечение безопасности эксплуатации объектов хранения и переработки вредных веществ. Решение указанной задачи достигнуто за счет того, в способе предотвращения техногенных катастроф, включающем мероприятия по сбору загрязняющих веществ в зоне промышленного объекта, являющегося источником загрязнения окружающей природной среды, подземных и грунтовых вод, в процессе его эксплуатации бурят, по меньшей мере, одну горизонтальную двухустьевую скважину под этим объектом, устанавливают перфорированные обсадные колонны или фильтрующие трубы, постоянно или периодически контролируют наличие в скважине загрязняющих веществ и при их наличии производят откачку. Дополнительно с одной стороны, например против водоема или по периметру объекта, возводят подземный барьер локализации загрязнения. Ддля этого бурят одну или несколько горизонтальных двухустьевых скважин, расположенных в вертикальной плоскости, устанавливают перфорированные обсадные колонны и цементируют пространство между ними. Патентные исследования показали, что предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью. Сущность изобретения поясняется на чертежах фиг.1 - 4, где: на фиг. 1 приведена схема реализации способа для нефтегазового объекта, например нефтехранилища, на фиг.2 - это же вариант реализации способа в плане, на фиг. 3 - пример реализации способа с применением подземного барьера локализации загрязнения, на фиг. 4 - пример реализации способа с подземным барьером локализации загрязнения в плане. ПРИМЕРЫ РЕАЛИЗАЦИИ СПОСОБА Пример 1 До строительства или в процессе эксплуатации промышленного объекта 1, являющегося источником загрязнения окружающей среды (фиг.1), возведенного на слое почвы 2, под которым находится песок 3 и глина 4, была пробурена, по меньшей мере, одна горизонтальная двухустьевая скважина 5. Эти (эта) скважины 5 имеют по два устья 6. В скважины 5 установлены перфорированные обсадные колонны (фильтрующие трубы) 7 с отверстиями 8. Устья 6 скважин 5, расположенные с одной стороны объединены коллектором 9, к коллектору 9 присоединен откачивающий насос 10. В скважинах установлены датчики контроля загрязнения (на фиг.1...4 датчики не показаны). В процессе эксплуатации постоянно при помощи датчиков или периодически путем взятия проб контролируется наличие вредных веществ в грунтовых и подземных водах и при их повышении концентрации свыше предельно допустимых норм включают откачивающий насос 10, который вместе с грунтовыми водами откачивает вредные вещества. Пример 2 Если объект находится на берегу водоема (фиг.2), то велика вероятность попадания этих веществ в водоемы. Со стороны водоема возводят подземный барьер локализации загрязнения 11. Для этого дополнительно бурят или одну или несколько горизонтальных двухустьевых скважин 5, расположенных в вертикальной плоскости и имеющих по два устья 6. В эти горизонтальные двухустьевые скважины 5 устанавливают перфорированные обсадные трубы 7 с отверстиями 8 и заливают пространство между ними цементом. Нижняя горизонтальная двухустьевая скважина 5 выполняется на уровне глины (скальных пород) другого водонепроницаемого слоя) 4. Вредные вещества задерживаются барьером локализации загрязнения 11, который может быть выполнен вертикально, как это показано на фиг.3, или под углом к горизонту. Применение изобретения позволило: 1. Повысить безопасность эксплуатации объектов хранения и переработки вредных веществ за счет того, что технологические и конструктивные природосберегающие решения при сооружении объектов осуществляются до возникновения аварийной ситуации. 2. Обеспечить сооружение горизонтальных скважин на действующих объектах. 3. Сохранить экологию окружающей среды в районе объекта повышенной опасности и вокруг него. Поверхностный слой почвы при бурении горизонтальных скважин не разрушается. 4. В случае прорыва вредных веществ в грунт своевременно обнаружить утечку и практически полностью извлечь их, отфильтровать для повторного использования или уничтожить. 5. Предотвратить прорыв вредных веществ в водоемы.

Формула изобретения

1. Способ предотвращения техногенных катастроф, включающий мероприятия по сбору загрязняющих веществ, отличающийся тем, что в зоне промышленного объекта, являющегося источником загрязнения окружающей природной среды, подземных и грунтовых вод, в процессе его эксплуатации бурят, по меньшей мере, одну горизонтальную двухустьевую скважину под этим объектом, устанавливают перфорированные обсадные колонны или фильтрующие трубы, и постоянно или периодически контролируют наличие в скважине загрязняющих веществ и при их наличии производят откачку. 2. Способ предотвращения техногенных катастроф по п. 1, отличающийся тем, что дополнительно с одной стороны, например против водоема или по периметру объекта, возводят подземный барьер локализации загрязнения, для этого бурят одну или несколько горизонтальных двухустьевых скважин, расположенных друг над другом, устанавливают перфорированные обсадные колонны и цементируют пространство между ними.

Похожие патенты:

Изобретение относится к строительству и эксплуатации подземных и наземных сооружений и может быть использовано для изучения строения и динамики земной поверхности и осуществления прогноза интенсивности и активизации деформационных процессов, что очень важно при поиске и разведке месторождений полезных ископаемых, например нефтегазоносных структур

Изобретение относится к нефтяной и газовой промышленности, а именно к области оценки и прогноза продуктивности углеводородных залежей и месторождений, в том числе на ранней или поздней стадии освоения нефтяных и газовых ресурсов, и может быть использовано для многоцелевого изучения и определения балансовых запасов нового вида углеводородного сырья для его промышленной добычи и использования в нефтегазовых отраслях

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Практический журнал для бухгалтеров о расчете заработной платы